Mechanistic Understanding of Lithium-Ion Adsorption, Intercalation, and Plating during Charging of Graphite Electrodes

插层(化学) 石墨 电极 锂(药物) 吸附 离子 材料科学 电镀(地质) 无机化学 化学 化学工程 复合材料 有机化学 物理化学 物理 医学 地球物理学 工程类 内分泌学
作者
Brian Chen,Niya Hope-Glenn,A. T. B. Wright,Robert J. Messinger,Alexander Couzis
标识
DOI:10.1021/acselectrochem.4c00079
摘要

Low-temperature and fast-charging lithium (Li)-ion batteries remain challenging due to the undesirable Li plating on graphite anodes under these conditions. Here, we present a kinetic mechanism that underpins electrochemical Li+ cation intercalation and Li metal plating reactions on graphite electrodes at low temperatures and fast rates. Variable-temperature (30 °C to -40 °C) and variable-rate (0.1 to 10 mA/cm2) constant-current measurements were conducted on three-electrode cells comprised of Li metal counter, graphite working, and Li metal reference electrodes, as well as two-electrode cells. The local minima in the potential profiles, often associated with the nucleation overpotential for Li metal plating on graphite, must be disentangled from contributions from Li metal stripping at the counter electrode. Differential capacity analyses of three-electrode measurements of graphite potential show that the extent of electrochemical Li+ cation intercalation drops precipitously as temperature decreases below -20 °C. The temperature dependence of empirically defined rate constants for Li+ cation intercalation and Li plating determined from constant-current measurements revealed non-Arrhenius behavior for Li+ cation intercalation that suggests a two-step pre-equilibration mechanism, while typical Arrhenius behavior for Li plating suggests a unimolecular single-step process. A kinetic model based on Langmuir adsorption shows that the interfacial concentration of Li+ cations adsorbed on graphite active sites is critical in dictating the kinetics of the charging process. We show that rate limitations, either adsorption-limited or surface reaction-limited, manifest at different temperatures and rates during the charging process. The results yield new mechanistic understanding of how Li+ cations electrochemically compete for intercalation into and plating on graphite electrodes, as a function of temperature and charge rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小诸葛发布了新的文献求助10
刚刚
Lucas应助在写了采纳,获得10
刚刚
海洋岩土12138完成签到 ,获得积分10
1秒前
汉堡包应助noobmaster采纳,获得10
2秒前
3秒前
今后应助houfei采纳,获得10
5秒前
Akim应助搞怪忆彤采纳,获得10
6秒前
柯一一应助小奇曲饼采纳,获得10
6秒前
安康完成签到,获得积分10
7秒前
螺旋桨发布了新的文献求助30
8秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得30
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
愉快的秋凌完成签到,获得积分10
11秒前
11秒前
zzzyyyppp应助科研通管家采纳,获得10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
金子完成签到,获得积分10
12秒前
12秒前
13秒前
noobmaster发布了新的文献求助10
14秒前
14秒前
15秒前
我是老大应助new采纳,获得10
18秒前
19秒前
马外奥发布了新的文献求助10
19秒前
叶暖发布了新的文献求助10
20秒前
20秒前
丘比特应助大狗砸采纳,获得30
21秒前
keyanbrant完成签到 ,获得积分10
22秒前
GAO发布了新的文献求助10
23秒前
内向半青发布了新的文献求助30
23秒前
24秒前
高分求助中
诺和针® 32G 4mm 说明书(2023年2月23日) 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899385
求助须知:如何正确求助?哪些是违规求助? 3444079
关于积分的说明 10833065
捐赠科研通 3168915
什么是DOI,文献DOI怎么找? 1750884
邀请新用户注册赠送积分活动 846335
科研通“疑难数据库(出版商)”最低求助积分说明 789157