ICT usage increases workforce geographical diversity

信息和通信技术 劳动力 多样性(政治) 业务 经济地理学 杠杆(统计) 经济增长 促进者 地理 人口经济学 经济 政治学 计算机科学 机器学习 法学
作者
Pengjun Zhao,Hao Wang,William A. V. Clark,Yongheng Feng,Qiyang Liu,Yanzhe Cui
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (20)
标识
DOI:10.1073/pnas.2426901122
摘要

The adoption of information and communication technology (ICT) by rural–urban migrants is reshaping job-search mobility, significantly shaping city-level workforce geographical diversity. This study provides compelling evidence of ICT’s impact by examining China’s cities. We introduce the rural–urban migrant workforce Geographical Diversity Index (GDI), a metric that captures the mobility patterns of 20 million migrant workers across Chinese cities from Q1 2019 to Q4 2023. This study highlights how ICT usage shapes migration dynamics and connectivity across geographic spaces, with implications for labor mobility and urban inclusivity. Using panel vector autoregression models, we establish a causal relationship between ICT usage and GDI, revealing heterogeneous impacts: large cities and male workers benefit more from ICT usage than small cities and female workers. While ICT-driven diversity enhances labor productivity, it also increases migrant workers’ job-hunting travel distances, contributing to higher carbon emissions. These findings underscore the dual role of ICT as a facilitator of inclusivity and a source of sustainability challenges, offering critical insights for policymakers aiming to leverage digital tools for equitable and sustainable urban development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到,获得积分10
刚刚
1秒前
1秒前
Sandy发布了新的文献求助10
2秒前
小HO完成签到,获得积分10
2秒前
传奇3应助xy采纳,获得10
4秒前
HC发布了新的文献求助10
4秒前
lili完成签到,获得积分10
5秒前
lr发布了新的文献求助10
5秒前
5秒前
CodeCraft应助doul2023采纳,获得10
6秒前
9秒前
金海涵应助Mr.Latitude采纳,获得10
9秒前
小马甲应助抽象的脆脆采纳,获得10
11秒前
11秒前
11秒前
12秒前
大辉完成签到 ,获得积分10
14秒前
忧虑的火龙果完成签到,获得积分10
15秒前
牛乘风发布了新的文献求助10
15秒前
wanci应助小马的可爱老婆采纳,获得10
15秒前
情怀应助无辜秋珊采纳,获得10
16秒前
16秒前
堀川美嘉kk完成签到,获得积分10
17秒前
doul2023发布了新的文献求助10
17秒前
17秒前
RRhhh完成签到,获得积分10
18秒前
友好的代丝完成签到,获得积分20
18秒前
18秒前
丘比特应助盒子采纳,获得10
18秒前
18秒前
shallow发布了新的文献求助10
18秒前
19秒前
20秒前
顾矜应助han采纳,获得10
20秒前
xy发布了新的文献求助10
20秒前
震动的觅露完成签到,获得积分10
21秒前
21秒前
crucible发布了新的文献求助200
22秒前
可爱的函函应助小晶豆采纳,获得10
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835479
求助须知:如何正确求助?哪些是违规求助? 3377803
关于积分的说明 10500774
捐赠科研通 3097386
什么是DOI,文献DOI怎么找? 1705784
邀请新用户注册赠送积分活动 820705
科研通“疑难数据库(出版商)”最低求助积分说明 772219