Role of artificial intelligence in the design and discovery of next-generation battery electrolytes

电池(电) 计算机科学 电解质 工程类 化学 电极 物理 功率(物理) 物理化学 量子力学
作者
Manikantan R. Nair,Tribeni Roy
出处
期刊:Chemical physics reviews [American Institute of Physics]
卷期号:6 (1)
标识
DOI:10.1063/5.0251325
摘要

Adverse climate change, global warming, and energy security have emerged as global challenges, demanding advancements in high-performance battery technologies to drive sustainability. In this scenario, developing electrolytes has gained significant momentum among various innovations, given their critical role in determining battery safety and performance. However, the conventional trial-and-error approach to electrolyte discovery is costly, complex, time-consuming, and often inefficient. Recent advancements in artificial intelligence (AI) over the past decade have catalyzed innovations across diverse fields, ranging from nanotechnology to space explorations, and are now emerging as a powerful tool for materials discovery. Numerous studies have demonstrated the effectiveness of AI in screening and characterizing next-generation electrolytes. This review offers a comprehensive outlook on the transformative role of AI in designing novel electrolytes. Examination of various electrolytes and their key parameters that influence the electrochemical performance of batteries is conducted. The challenges and opportunities in using AI to design electrolytes with tailored properties are explored. Furthermore, a futuristic vision for integrating science-driven AI-based approaches with existing experimental and theoretical methods to accelerate electrolyte discovery is presented. By offering such a comprehensive understanding, this review aims to provide researchers, industries, and policymakers with insights into how AI can be leveraged to design next-generation electrolytes, paving the way toward transformative progress in battery technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助朴素小刺猬采纳,获得10
刚刚
杰杰发布了新的文献求助10
刚刚
飘逸鑫完成签到,获得积分20
1秒前
YY完成签到,获得积分10
2秒前
2秒前
万宁发布了新的文献求助30
2秒前
爆米花应助天依采纳,获得30
3秒前
哈哈哈哈发布了新的文献求助10
4秒前
Tzzl0226发布了新的文献求助10
4秒前
4秒前
小梁要加油完成签到,获得积分10
5秒前
joy发布了新的文献求助10
6秒前
科研通AI2S应助YYMM采纳,获得10
6秒前
puhong zhang发布了新的文献求助30
7秒前
李健的粉丝团团长应助HK采纳,获得10
8秒前
以韓完成签到 ,获得积分10
8秒前
8秒前
蓁蓁完成签到,获得积分10
10秒前
科研通AI5应助万宁采纳,获得10
11秒前
ONE完成签到,获得积分10
11秒前
12秒前
12秒前
段玉杰发布了新的文献求助10
12秒前
13秒前
14秒前
风趣惜霜发布了新的文献求助10
16秒前
16秒前
内向念双完成签到,获得积分20
17秒前
18秒前
小马甲应助苏苏采纳,获得10
18秒前
cigar发布了新的文献求助10
18秒前
冬天完成签到 ,获得积分10
18秒前
科研通AI5应助沈达采纳,获得30
18秒前
SYLH应助你凭什么和我兑现采纳,获得10
19秒前
20秒前
完美世界应助大白采纳,获得10
20秒前
20秒前
22秒前
李爱国应助youngbin采纳,获得10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814903
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399256
捐赠科研通 3076557
什么是DOI,文献DOI怎么找? 1689851
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608