A Hybrid Data and Mechanism Model-driven Digital Twin Modelling Approach for Novel Traction Power Systems

机制(生物学) 计算机科学 牵引(地质) 功率(物理) 工程类 机械工程 物理 量子力学
作者
Xin Li,Yingzhi Liu
出处
期刊:Urban rail transit [Springer Science+Business Media]
标识
DOI:10.1007/s40864-024-00236-2
摘要

Abstract Given the demand for real-time operation state simulation technology for integrating significant amounts of renewable energy into the traction power systems (TPSS), and considering the substantial volatility and intermittence of renewable energy (photovoltaic) output, the accuracy and real-time performance of traditional mechanism simulation models are low. This paper proposes a new digital twin (DT) modeling method for the TPSS, driven by a combination of data and mechanism models. Firstly, the mechanism model of the TPSS is established, with the external power supply simplified to a three-phase Thevenin equivalent circuit. The traction substation is replaced by a traction transformer, and the AT substation is replaced by an AT transformer. The traction network is simplified into a four-conductor model of T, F, P, and R, represented by a π-type equivalent circuit. Secondly, based on the measured data of photovoltaic (PV) power, the data are segmented according to its output time characteristics after preprocessing. The data source is derived by considering the form of a controlled current source. The PV data-driven model is established by importing the real-time data source into Simulink and outputting it to the controlled current source. Thirdly, the railway static power conditioner is used to effectively integrate the TPSS mechanism model with the PV data model, completing the coupling modeling of the two. Finally, the system is simulated and verified by modeling the typical working conditions of two power supply arms with heavy loads (8 MW) and one power supply arm with a heavy load (8 MW) and a light load (2 MW). The results show that the system can achieve the average distribution of power according to the external input PV output data and can reduce the traction energy consumption by about 0.5 MW for the two power supply arms. This is of great significance for the simulation and application of the novel TPSS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直花生完成签到,获得积分10
2秒前
万事都灵完成签到 ,获得积分10
2秒前
wy完成签到,获得积分20
2秒前
lascqy完成签到 ,获得积分10
2秒前
Accpted河豚完成签到,获得积分10
3秒前
华仔完成签到,获得积分10
4秒前
cdercder应助Numdance采纳,获得10
5秒前
和谐的映梦完成签到,获得积分10
5秒前
mzrrong完成签到 ,获得积分10
7秒前
papa完成签到,获得积分10
8秒前
小酒窝完成签到,获得积分10
11秒前
zz完成签到,获得积分10
12秒前
shengyou完成签到,获得积分10
12秒前
paofu完成签到,获得积分20
13秒前
xxh应助papa采纳,获得50
13秒前
shizi完成签到,获得积分10
15秒前
王QQ完成签到 ,获得积分10
15秒前
yhmi0809完成签到,获得积分10
16秒前
小二郎应助zz采纳,获得10
16秒前
加载文献别卡了完成签到,获得积分10
16秒前
SciGPT应助shengyou采纳,获得10
18秒前
鑫叶完成签到,获得积分10
20秒前
善学以致用应助哇咔咔采纳,获得10
24秒前
英俊的铭应助11111111111采纳,获得10
24秒前
ZY发布了新的文献求助10
27秒前
薛诗棋完成签到,获得积分20
30秒前
Xiehf完成签到,获得积分10
30秒前
SciGPT应助sdl采纳,获得10
31秒前
黑木完成签到 ,获得积分10
31秒前
ruby30发布了新的文献求助10
33秒前
33秒前
Ava应助欢喜的道之采纳,获得10
35秒前
36秒前
weihe完成签到,获得积分10
36秒前
37秒前
好好学习完成签到,获得积分10
37秒前
mamba完成签到 ,获得积分10
37秒前
Selonfer完成签到,获得积分10
37秒前
38秒前
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843340
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541427
捐赠科研通 3106276
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313