Spatiotemporal imaging of charge transfer in photocatalyst particles

光催化 飞秒 电子转移 微秒 材料科学 化学物理 电子 载流子 光诱导电子转移 纳米技术 电荷(物理) 光化学 光电子学 化学 催化作用 光学 物理 激光器 生物化学 量子力学
作者
Ruotian Chen,Zefeng Ren,Yu Liang,Hang Zhang,Thomas Dittrich,Runze Liu,Yang Liu,Yüe Zhao,Shan Pang,Hongyu An,Chenwei Ni,Panwang Zhou,Keli Han,Fengtao Fan,Can Li
出处
期刊:Nature [Springer Nature]
卷期号:610 (7931): 296-301 被引量:175
标识
DOI:10.1038/s41586-022-05183-1
摘要

The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production1-4. Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques9-11, and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift-diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
月潮共生完成签到 ,获得积分10
2秒前
ding应助客念采纳,获得10
4秒前
苦酷完成签到,获得积分10
5秒前
和谐的蛋挞完成签到,获得积分20
5秒前
taowang14完成签到,获得积分10
7秒前
7秒前
7秒前
庸人自扰的玩笑完成签到,获得积分10
8秒前
小王同学应助范天问采纳,获得10
9秒前
9秒前
10秒前
彭于晏应助朱哦哦采纳,获得10
10秒前
11秒前
在水一方应助霖霖向前冲采纳,获得10
12秒前
12秒前
英俊的铭应助P33333采纳,获得20
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
shinysparrow应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
shmily完成签到,获得积分10
14秒前
ZXX发布了新的文献求助10
15秒前
丘比特应助合适明雪采纳,获得10
15秒前
w2503发布了新的文献求助30
15秒前
iVANPENNY应助sunshine采纳,获得10
17秒前
kkkkk发布了新的文献求助100
18秒前
18秒前
20秒前
20秒前
21秒前
darui完成签到 ,获得积分10
22秒前
今后应助CcAsa采纳,获得10
23秒前
俊逸的从云完成签到,获得积分10
24秒前
25秒前
26秒前
昭华昭华完成签到,获得积分10
27秒前
27秒前
27秒前
科研通AI2S应助连南烟采纳,获得10
28秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Lexique et typologie des poteries: pour la normalisation de la description des poteries (Full Book) 400
Cardiology: Board and Certification Review 300
Transformerboard III 300
Cervical Spine Deformity Surgery 200
Applicability and efficacy of ultrasound elastography in neurosurgery: a systematic review of the literature 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2355970
求助须知:如何正确求助?哪些是违规求助? 2062636
关于积分的说明 5147160
捐赠科研通 1792383
什么是DOI,文献DOI怎么找? 895340
版权声明 557412
科研通“疑难数据库(出版商)”最低求助积分说明 477894