聚合
焓
解聚
聚合物
计算机科学
工作(物理)
方案(数学)
戒指(化学)
融合
人工智能
机器学习
材料科学
化学
热力学
数学
物理
高分子化学
有机化学
数学分析
哲学
语言学
作者
Aubrey Toland,Tran Doan Huan,Lihua Chen,Yinghao Li,Chao Zhang,Will R. Gutekunst,Rampi Ramprasad
标识
DOI:10.1021/acs.jpca.3c05870
摘要
Ring-opening enthalpy (ΔHROP) is a fundamental thermodynamic quantity controlling the polymerization and depolymerization of an important class of recyclable polymers, namely, those created from ring-opening polymerization (ROP). Highly accurate first-principles-based computational methods to compute ΔHROP are computationally too demanding to efficiently guide the design of depolymerizable polymers. In this work, we develop a generalizable machine-learning model that was trained on experimental measurements and reliably computed simulation results of ΔHROP (the latter provides a pathway to systematically increase the chemical diversity of the data). Predictions of ΔHROP using this machine-learning model require essentially no time while the prediction accuracy is about ∼8 kJ/mol, approaching the well-known chemical accuracy. We hope that this effort will contribute to the future development of new depolymerizable polymers.
科研通智能强力驱动
Strongly Powered by AbleSci AI