Dynamic Testing for Autonomous Vehicles Using Random Quasi Monte Carlo

蒙特卡罗方法 计算机科学 采样(信号处理) 瓶颈 临界性 样品(材料) 子空间拓扑 拒收取样 线性子空间 数学优化 马尔科夫蒙特卡洛 人工智能 混合蒙特卡罗 数学 统计 化学 物理 核物理学 嵌入式系统 滤波器(信号处理) 色谱法 计算机视觉 几何学
作者
Jingwei Ge,Jiawei Zhang,Cheng Chang,Yi Zhang,Danya Yao,Yonglin Tian,Li Li
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 4480-4492 被引量:10
标识
DOI:10.1109/tiv.2024.3358329
摘要

The substantial resource usage required to create ample scenarios for testing Autonomous Vehicles (AV) presents a bottleneck in their implementation. At present, research relies on sampling the driving behaviour of Surrounding Vehicles (SV) based on naturalistic datasets in simulation. However, these methods still generate huge amounts of scenarios, making it impossible to synthetically evaluate AV intelligence in a very small number of tests (especially in real-world situations). Simultaneously, the unknown distribution of critical scenarios leads to the problem that more critical scenarios cannot be accurately sampled. In this paper, a novel optimization problem is described and a dynamic scenario sampling method is proposed to cover more critical scenarios with finite samples. First, the sampling space is constructed by extracting the behavioural model parameters of the SVs. Second, multiple rounds of sampling are carried out successively to learn the distribution of critical scenarios, which in turn gradually improves the coverage of the critical scenarios. To do this, in each round, we divide the sampling space into several subspaces using two-step sampling, sample the scenarios using Random Quasi Monte Carlo (RQMC), evaluate the criticality of the subspace, and then use the evaluation results to guide the selection of the sampling space for the next round. The purpose of RQMC is to uniformly sample in the critical subspace rather than Standard Monte Carlo (SMC). Experimental results show that our method can better narrow the gap with the distribution of critical scenarios and discover more critical scenarios when compared to the baseline method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
glanceofwind完成签到 ,获得积分10
刚刚
View发布了新的文献求助10
刚刚
1秒前
草人乙发布了新的文献求助10
1秒前
苦咖啡发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
老阎应助赫小菇采纳,获得30
3秒前
Hello应助无心的土豆采纳,获得10
3秒前
Olivia完成签到,获得积分10
3秒前
3秒前
丸子发布了新的文献求助10
4秒前
4秒前
晓晓完成签到 ,获得积分10
4秒前
Akim应助天海采纳,获得30
5秒前
包容煎饼发布了新的文献求助10
5秒前
y一一发布了新的文献求助10
6秒前
标致冰海完成签到 ,获得积分10
6秒前
Hanluchen完成签到,获得积分10
8秒前
柴智杰完成签到,获得积分20
8秒前
zhoumaoyuan发布了新的文献求助10
8秒前
张某发布了新的文献求助10
9秒前
9秒前
艺玲发布了新的文献求助10
9秒前
10秒前
creepppp完成签到,获得积分10
11秒前
12秒前
123完成签到,获得积分10
12秒前
12秒前
李健的小迷弟应助mochaff采纳,获得10
13秒前
14秒前
Guoqiang发布了新的文献求助10
15秒前
开始的开始完成签到,获得积分10
16秒前
我是老大应助zhoumaoyuan采纳,获得10
16秒前
辞镜发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962