Reinforcement Learning Environment for Wavefront Sensorless Adaptive Optics in Single-Mode Fiber Coupled Optical Satellite Communications Downlinks

波前 自适应光学 波前传感器 计算机科学 强化学习 电信线路 延迟(音频) 光学 变形镜 自由空间光通信 光通信 物理 人工智能 电信
作者
Payam Parvizi,Runnan Zou,Colin Bellinger,Ross Cheriton,Davide Spinello
出处
期刊:Photonics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (12): 1371-1371 被引量:2
标识
DOI:10.3390/photonics10121371
摘要

Optical satellite communications (OSC) downlinks can support much higher bandwidths than radio-frequency channels. However, atmospheric turbulence degrades the optical beam wavefront, leading to reduced data transfer rates. In this study, we propose using reinforcement learning (RL) as a lower-cost alternative to standard wavefront sensor-based solutions. We estimate that RL has the potential to reduce system latency, while lowering system costs by omitting the wavefront sensor and low-latency wavefront processing electronics. This is achieved by adopting a control policy learned through interactions with a cost-effective and ultra-fast readout of a low-dimensional photodetector array, rather than relying on a wavefront phase profiling camera. However, RL-based wavefront sensorless adaptive optics (AO) for OSC downlinks faces challenges relating to prediction latency, sample efficiency, and adaptability. To gain a deeper insight into these challenges, we have developed and shared the first OSC downlink RL environment and evaluated a diverse set of deep RL algorithms in the environment. Our results indicate that the Proximal Policy Optimization (PPO) algorithm outperforms the Soft Actor–Critic (SAC) and Deep Deterministic Policy Gradient (DDPG) algorithms. Moreover, PPO converges to within 86% of the maximum performance achievable by the predominant Shack–Hartmann wavefront sensor-based AO system. Our findings indicate the potential of RL in replacing wavefront sensor-based AO while reducing the cost of OSC downlinks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助qqq采纳,获得10
1秒前
张志远发布了新的文献求助10
1秒前
星河完成签到,获得积分10
1秒前
luxiang完成签到,获得积分10
2秒前
3秒前
善学以致用应助机智采纳,获得10
3秒前
5秒前
WFLLL发布了新的文献求助10
5秒前
6秒前
隐形曼青应助han采纳,获得10
6秒前
FashionBoy应助euphoria采纳,获得10
6秒前
CipherSage应助专注的荧采纳,获得10
7秒前
jyoraku发布了新的文献求助10
7秒前
芜湖完成签到 ,获得积分10
7秒前
艾李申发布了新的文献求助10
8秒前
鲤鱼奇异果完成签到,获得积分10
9秒前
慕青应助结实的老虎采纳,获得30
10秒前
ting发布了新的文献求助10
10秒前
10秒前
开放磬完成签到,获得积分10
11秒前
11秒前
向日葵发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
14秒前
赘婿应助qqq采纳,获得10
14秒前
晚风发布了新的文献求助10
14秒前
科研通AI5应助深情的立辉采纳,获得10
15秒前
15秒前
丢丢发布了新的文献求助10
15秒前
16秒前
万能图书馆应助敏敏子采纳,获得10
17秒前
euphoria发布了新的文献求助10
17秒前
机智发布了新的文献求助10
17秒前
ff发布了新的文献求助10
17秒前
17秒前
jjj发布了新的文献求助30
19秒前
Distance发布了新的文献求助10
19秒前
19秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829872
求助须知:如何正确求助?哪些是违规求助? 3372453
关于积分的说明 10472306
捐赠科研通 3091969
什么是DOI,文献DOI怎么找? 1701615
邀请新用户注册赠送积分活动 818527
科研通“疑难数据库(出版商)”最低求助积分说明 770942