Fault Diagnosis of Gear Based on Multichannel Feature Fusion and DropKey-Vision Transformer

人工智能 计算机科学 模式识别(心理学) 频道(广播) 断层(地质) 特征提取 特征(语言学) 变压器 可视化 计算机视觉 工程类 电压 计算机网络 语言学 哲学 地震学 电气工程 地质学
作者
Na Yang,Jie Liu,Weiqiang Zhao,Yutao Tan
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (4): 4758-4770
标识
DOI:10.1109/jsen.2023.3344999
摘要

To solve the problem that it is single-channel vibration signals not being able to fully express fault feature information and diagnostic networks not being able to fully capture its information resulting in low diagnostic accuracy, a new gear fault diagnosis method is proposed. First, subtraction average-based optimizer (SABO) as an optimization algorithm is introduced to optimize the parameters of variational mode decomposition (VMD) quickly and with high quality to conduct signal preprocessing. Next, the noisy signals in each channel can be quickly and effectively processed to obtain clean 1-D and prominent vibration characteristics signals from multichannel. Then, multichannel information is fused to obtain image datasets for diagnosis based on symmetric dot pattern (SDP) to realize clear signals transformed into images. A diagnostic model is proposed based on DropKey added for vision transformer (DVit) to enhance the diagnostic network's ability to comprehensively capture multichannel feature information. Finally, the proposed method is validated through three datasets from gear fault diagnosis experiments with the average accuracy in fault diagnosis reaching more than 99.5% whether it is the degree or type of fault diagnosis. The average accuracy has increased by at least 0.5% compared with before improvement, and it has increased about 2%–7% compared with other methods. The results with visualization form verify the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
八乙基环辛四烯完成签到,获得积分10
2秒前
大模型应助高高小兔子采纳,获得10
2秒前
2秒前
ZDD2发布了新的文献求助10
2秒前
花开富贵完成签到,获得积分10
3秒前
甜晞完成签到,获得积分10
3秒前
007完成签到,获得积分10
3秒前
香蕉觅云应助惊鸿客采纳,获得20
4秒前
4秒前
霜序完成签到,获得积分10
4秒前
可爱的函函应助福宝采纳,获得10
5秒前
5秒前
5秒前
5秒前
诸-z发布了新的文献求助10
6秒前
6秒前
7秒前
可爱的函函应助白白采纳,获得10
7秒前
领导范儿应助dilibolaba采纳,获得10
7秒前
小蘑菇应助yu采纳,获得10
7秒前
hjyylab应助风花雪月采纳,获得10
7秒前
N_wh完成签到,获得积分10
7秒前
小马甲应助XX-Uchiha采纳,获得10
7秒前
取什么好呢完成签到,获得积分10
9秒前
施雯发布了新的文献求助10
9秒前
hjyylab应助DI采纳,获得10
9秒前
8888888完成签到,获得积分10
9秒前
leodu完成签到,获得积分10
10秒前
健壮的翎发布了新的文献求助10
11秒前
柠檬加冰发布了新的文献求助10
11秒前
laallaall发布了新的文献求助10
11秒前
大可发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816