FedComm: A Privacy-Enhanced and Efficient Authentication Protocol for Federated Learning in Vehicular Ad-Hoc Networks

计算机科学 车载自组网 认证(法律) 计算机安全 无线自组网 架空(工程) 联合学习 协议(科学) 匿名 计算机网络 身份验证协议 差别隐私 信息隐私 无线 分布式计算 数据挖掘 医学 电信 替代医学 病理 操作系统
作者
Xiaohan Yuan,Jiqiang Liu,Bin Wang,Wei Wang,Bin Wang,Tao Li,Xiaobo Ma,Witold Pedrycz
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 777-792 被引量:22
标识
DOI:10.1109/tifs.2023.3324747
摘要

In vehicular ad-hoc networks (VANET), federated learning enables vehicles to collaboratively train a global model for intelligent transportation without sharing their local data. However, due to dynamic network structure and unreliable wireless communication of VANET, various potential risks (e.g., identity privacy leakage, data privacy inference, model integrity compromise, and data manipulation) undermine the trustworthiness of intermediate model parameters necessary for building the global model. While existing cryptography techniques and differential privacy provide provable security paradigms, the practicality of secure federated learning in VANET is hindered in terms of training efficiency and model performance. Therefore, developing a secure and efficient federated learning in VANET remains a challenge. In this work, we propose a privacy-enhanced and efficient authentication protocol for federated learning in VANET, called FedComm. Unlike existing solutions, FedComm addresses the above challenge through user anonymity. First, FedComm enables vehicles to participate in training with unlinkable pseudonyms, ensuring both privacy preservation and efficient collaboration. Second, FedComm incorporates an efficient authentication protocol to guarantee the authenticity and integrity of model parameters originated from anonymous vehicles. Finally, FedComm accurately identifies and completely eliminates malicious vehicles in anonymous communication. Security analysis and verification with ProVerif demonstrate that FedComm enhances privacy and reliability of intermediate model parameters. Experimental results show that FedComm reduces the overhead of proof generation and verification by 67.38% and 67.39%, respectively, compared with the state-of-the-art authentication protocols used in federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研牛马应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
搞怪不言发布了新的文献求助10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
刚刚
果实发布了新的文献求助10
刚刚
刚刚
刚刚
问雁发布了新的文献求助10
刚刚
细腻海蓝发布了新的文献求助10
刚刚
王yz发布了新的文献求助10
1秒前
xin发布了新的文献求助10
1秒前
1秒前
大模型应助12采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
科研通AI2S应助Luca采纳,获得20
3秒前
JamesPei应助困困采纳,获得30
4秒前
坚强访波完成签到,获得积分10
4秒前
等待的小馒头完成签到,获得积分10
4秒前
Rubby应助carl采纳,获得30
5秒前
5秒前
5秒前
pan发布了新的文献求助10
5秒前
潘宇霜发布了新的文献求助10
5秒前
Bai_shao完成签到,获得积分10
5秒前
5秒前
Joye完成签到,获得积分10
5秒前
Choyy完成签到,获得积分10
5秒前
6秒前
彭于晏应助DJ采纳,获得10
6秒前
6秒前
zychaos完成签到,获得积分10
6秒前
胡渊博完成签到,获得积分10
7秒前
溪边最好的小树完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084922
求助须知:如何正确求助?哪些是违规求助? 4301422
关于积分的说明 13403320
捐赠科研通 4125991
什么是DOI,文献DOI怎么找? 2259687
邀请新用户注册赠送积分活动 1263861
关于科研通互助平台的介绍 1198056