已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Construction of a risk prediction model for detecting postintensive care syndrome—mental disorders

接收机工作特性 医学 列线图 逻辑回归 谵妄 焦虑 萧条(经济学) 共病 内科学 曲线下面积 急诊医学 精神科 宏观经济学 经济
作者
Faying Wang,Jingshu Li,Yuying Fan,Xiaona Qi
出处
期刊:Nursing in critical care [Wiley]
卷期号:29 (4): 646-660 被引量:3
标识
DOI:10.1111/nicc.12978
摘要

Abstract Background Postintensive care syndrome (PICS) has adverse multidimensional effects on nearly half of the patients discharged from ICU. Mental disorders such as anxiety, depression and post‐traumatic stress disorder (PTSD) are the most common psychological problems for patients with PICS with harmful complications. However, developing prediction models for mental disorders in post‐ICU patients is an understudied problem. Aims To explore the risk factors of PICS mental disorders, establish the prediction model and verify its prediction efficiency. Study Design In this cohort study, data were collected from 393 patients hospitalized in the ICU of a tertiary hospital from April to September 2022. Participants were randomly assigned to modelling and validation groups using a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to select the predictors, multiple logistic regression analysis was used to establish the risk prediction model, and a dynamic nomogram was developed. The Hosmer–Lemeshow (HL) test was performed to determine the model's goodness of fit. The area under the receiver operating characteristic (ROC) curve was used to evaluate the model's prediction efficiency. Results The risk factors of mental disorders were Sepsis‐related organ failure assessment (SOFA) score, Charlson comorbidity index (CCI), delirium duration, ICU depression score and ICU sleep score. The HL test revealed that p = .249, the area under the ROC curve = 0.860, and the corresponding sensitivity and specificity were 84.8% and 71.0%, respectively. The area under the ROC curve of the verification group was 0.848. A mental disorders dynamic nomogram for post‐ICU patients was developed based on the regression model. Conclusions The prediction model provides a reference for clinically screening patients at high risk of developing post‐ICU mental disorders, to enable the implementation of timely preventive management measures. Relevance to Clinical Practice The dynamic nomogram can be used to systematically monitor various factors associated with mental disorders. Furthermore, nurses need to develop and apply accurate nursing interventions that consider all relevant variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玖月发布了新的文献求助10
刚刚
勤劳的冰菱完成签到,获得积分10
刚刚
2秒前
4秒前
cjh发布了新的文献求助10
6秒前
无昵称完成签到 ,获得积分10
8秒前
sagowei发布了新的文献求助10
9秒前
暗号完成签到 ,获得积分10
11秒前
11秒前
平安喜乐完成签到 ,获得积分10
15秒前
xiao_J完成签到,获得积分10
16秒前
sagowei完成签到,获得积分10
16秒前
勤奋的立果完成签到 ,获得积分10
17秒前
迷路向松完成签到,获得积分10
17秒前
oydent完成签到,获得积分10
23秒前
六月初八夜完成签到,获得积分10
23秒前
yetong完成签到 ,获得积分10
24秒前
24秒前
上官若男应助PIEZO2采纳,获得10
24秒前
真实的白翠完成签到 ,获得积分10
25秒前
26秒前
雷半双发布了新的文献求助10
27秒前
27秒前
28秒前
催化剂发布了新的文献求助10
30秒前
天真之桃完成签到,获得积分10
32秒前
何茂郎发布了新的文献求助10
34秒前
王某人完成签到 ,获得积分10
35秒前
超帅柚子完成签到 ,获得积分10
35秒前
37秒前
123123完成签到 ,获得积分10
37秒前
38秒前
Zenglongying发布了新的文献求助10
43秒前
郑鹏飞发布了新的文献求助10
43秒前
七月江城发布了新的文献求助10
43秒前
大模型应助绝尘采纳,获得10
44秒前
情怀应助7788采纳,获得10
46秒前
ktw完成签到,获得积分10
47秒前
123完成签到 ,获得积分10
48秒前
满意一曲发布了新的文献求助10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777548
求助须知:如何正确求助?哪些是违规求助? 3322938
关于积分的说明 10212367
捐赠科研通 3038242
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201