大肠杆菌
电子转移
细胞外
化学
生物物理学
化学工程
微生物学
材料科学
细胞生物学
生物化学
生物
工程类
光化学
基因
作者
Mohammed Mouhib,Melania Reggente,Lin Li,Nils Schuergers,Ardemis A. Boghossian
出处
期刊:Joule
[Elsevier]
日期:2023-09-01
卷期号:7 (9): 2092-2106
被引量:35
标识
DOI:10.1016/j.joule.2023.08.006
摘要
Escherichia coli (E. coli) show limited extracellular electron transfer (EET) that compromises their use in bioelectronics. We enhance the EET in E. coli by expressing an electron transfer pathway that spans the inner and outer membranes of the cell, including the periplasmic space in between. We observe a 54% enhancement in electron transfer for engineered E. coli expressing the endogenous inner-membrane NapC and periplasmic NapB cytochromes under non-native conditions with the outer-membrane MtrCAB complex from Shewanella oneidensis (S. oneidensis). The greatest enhancement, however, is observed for E. coli expressing the complete S. oneidensis Mtr pathway consisting of the inner-membrane CymA, periplasmic small tetraheme cytochrome (STC), and outer-membrane Mtr complex. This engineered strain shows a 3-fold increase in current generation compared with the empty vector control and a 2-fold increase compared with the state-of-the-art bioengineered strain comprising only the Mtr complex and CymA. These results highlight the importance of periplasmic shuttles in engineering EET.
科研通智能强力驱动
Strongly Powered by AbleSci AI