Generative adversarial networks based digital twin channel modeling for intelligent communication networks

计算机科学 频道(广播) 可靠性(半导体) 无线 数据建模 计算机网络 电信 功率(物理) 物理 量子力学 数据库
作者
Yuxin Zhang,Ruisi He,Bo Ai,Mi Yang,Ruifeng Chen,Chenlong Wang,Zhengyu Zhang,Zhangdui Zhong
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 32-43 被引量:3
标识
DOI:10.23919/jcc.fa.2023-0206.202308
摘要

Integration of digital twin (DT) and wireless channel provides new solution of channel modeling and simulation, and can assist to design, optimize and evaluate intelligent wireless communication system and networks. With DT channel modeling, the generated channel data can be closer to realistic channel measurements without requiring a prior channel model, and amount of channel data can be significantly increased. Artificial intelligence (AI) based modeling approach shows outstanding performance to solve such problems. In this work, a channel modeling method based on generative adversarial networks is proposed for DT channel, which can generate identical statistical distribution with measured channel. Model validation is conducted by comparing DT channel characteristics with measurements, and results show that DT channel leads to fairly good agreement with measured channel. Finally, a link-layer simulation is implemented based on DT channel. It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data. The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications, as well as improving the performance and reliability of intelligent communication networking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YJM完成签到,获得积分10
1秒前
otaro发布了新的文献求助10
1秒前
JayWu完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
dorianao应助无所谓的啦采纳,获得10
4秒前
4秒前
科研通AI2S应助无所谓的啦采纳,获得10
4秒前
dorianao应助无所谓的啦采纳,获得10
4秒前
SYLH应助精明若菱采纳,获得10
4秒前
英俊的铭应助无所谓的啦采纳,获得10
5秒前
orixero应助无所谓的啦采纳,获得10
5秒前
5秒前
Doctorchentao完成签到,获得积分20
6秒前
田様应助芳心纵火犯采纳,获得10
6秒前
孤独梦曼完成签到,获得积分10
8秒前
鲲kun发布了新的文献求助10
9秒前
我是老大应助MslL她的影子采纳,获得10
9秒前
明月发布了新的文献求助10
9秒前
香蕉觅云应助air采纳,获得10
10秒前
柚子发布了新的文献求助10
11秒前
11秒前
LHJ完成签到,获得积分20
13秒前
含蓄的紫霜完成签到,获得积分10
14秒前
烟花应助Doctorchentao采纳,获得10
15秒前
一路向医发布了新的文献求助10
16秒前
打打应助斑比采纳,获得10
16秒前
18秒前
otaro完成签到,获得积分10
19秒前
LEMON发布了新的文献求助10
19秒前
所所应助建安采纳,获得10
20秒前
岳函羽应助白许四十采纳,获得10
20秒前
灰太狼大王完成签到,获得积分10
21秒前
李二牛完成签到,获得积分20
22秒前
22秒前
努力买房的小金完成签到,获得积分10
24秒前
yznfly应助李二牛采纳,获得30
25秒前
大气的剑心关注了科研通微信公众号
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902873
求助须知:如何正确求助?哪些是违规求助? 3447537
关于积分的说明 10849856
捐赠科研通 3172916
什么是DOI,文献DOI怎么找? 1753195
邀请新用户注册赠送积分活动 847566
科研通“疑难数据库(出版商)”最低求助积分说明 790166