Generative adversarial networks based digital twin channel modeling for intelligent communication networks

计算机科学 频道(广播) 可靠性(半导体) 无线 数据建模 计算机网络 电信 功率(物理) 物理 量子力学 数据库
作者
Yuxin Zhang,Ruisi He,Bo Ai,Mi Yang,Ruifeng Chen,Chenlong Wang,Zhengyu Zhang,Zhangdui Zhong
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 32-43 被引量:12
标识
DOI:10.23919/jcc.fa.2023-0206.202308
摘要

Integration of digital twin (DT) and wireless channel provides new solution of channel modeling and simulation, and can assist to design, optimize and evaluate intelligent wireless communication system and networks. With DT channel modeling, the generated channel data can be closer to realistic channel measurements without requiring a prior channel model, and amount of channel data can be significantly increased. Artificial intelligence (AI) based modeling approach shows outstanding performance to solve such problems. In this work, a channel modeling method based on generative adversarial networks is proposed for DT channel, which can generate identical statistical distribution with measured channel. Model validation is conducted by comparing DT channel characteristics with measurements, and results show that DT channel leads to fairly good agreement with measured channel. Finally, a link-layer simulation is implemented based on DT channel. It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data. The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications, as well as improving the performance and reliability of intelligent communication networking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率钢笔完成签到,获得积分10
1秒前
3秒前
温柔访琴完成签到,获得积分10
3秒前
mcl应助烤全鱼呢采纳,获得10
4秒前
4秒前
5秒前
6秒前
6秒前
大个应助纯真大门采纳,获得10
7秒前
7秒前
8秒前
yydssss完成签到,获得积分10
9秒前
10秒前
张子贤发布了新的文献求助10
11秒前
liuyuh完成签到,获得积分10
12秒前
12秒前
科研通AI5应助风中尔竹采纳,获得10
14秒前
17秒前
Rick发布了新的文献求助10
17秒前
qdsj2033完成签到,获得积分10
21秒前
充电宝应助Luoyr采纳,获得10
24秒前
26秒前
27秒前
28秒前
janet发布了新的文献求助10
29秒前
30秒前
30秒前
ilsa发布了新的文献求助10
31秒前
坦率雁丝发布了新的文献求助10
31秒前
橙橙妈妈发布了新的文献求助30
34秒前
34秒前
yejunjie1发布了新的文献求助10
36秒前
36秒前
科目三应助小树叶采纳,获得30
38秒前
39秒前
伶俐的书南完成签到,获得积分10
41秒前
yejunjie1完成签到,获得积分10
42秒前
zhoumaoyuan发布了新的文献求助10
42秒前
44秒前
烟花应助朴素妙梦采纳,获得10
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Grammar in Action: Building comprehensive grammars of talk-in-interaction 1000
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195212
求助须知:如何正确求助?哪些是违规求助? 3730834
关于积分的说明 11750769
捐赠科研通 3405781
什么是DOI,文献DOI怎么找? 1868625
邀请新用户注册赠送积分活动 924812
科研通“疑难数据库(出版商)”最低求助积分说明 835532