亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AMSSE-Net: Adaptive Multiscale Spatial–Spectral Enhancement Network for Classification of Hyperspectral and LiDAR Data

高光谱成像 计算机科学 激光雷达 遥感 传感器融合 人工智能 空间分析 模式识别(心理学) 多光谱图像 数据挖掘 地理
作者
Hongmin Gao,Hao Feng,Yiyan Zhang,Shufang Xu,Bing Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:26
标识
DOI:10.1109/tgrs.2023.3331486
摘要

With the abundant emergence of remote sensing data sources, multimodal remote sensing observation has become an active field. Extracting valuable information from multi-modal data has the potential to make a significant contribution to applications such as urban planning and monitoring. However, existing studies are deficient in extracting spectral and spatial features from hyperspectral remote sensing data. Meanwhile, the method of fusing multimodal features has limitations and poses a challenge to the convergence of the model loss function, which increases the complexity of the network model optimisation process. Therefore, this paper proposes an Adaptive Multi-scale Spatial–Spectral Enhancement Network for Classification of Hyperspectral and LiDAR Data called AMSSE-Net. First, we perform deep mining of spectral features in hyperspectral images by the involution operator. The main idea is to take full advantage of the involution operator in characterising spectral features by using the property that the convolution kernel shares the feature channels within the group. Furthermore, the multi-branching approach is used to extract the multi-scale information, and then the spectral-spatial features are formed with the strategy of hierarchical fusion. Meanwhile, we employ three-layer convolution for extracting shallow features from LiDAR data, offering supplementary information. Finally, we propose the "Adaptive Feature Fusion Module," an innovative and comprehensive mechanism designed for the fusion of features from diverse sources in multi-source data fusion. These dynamically assigned weights guide the selection of the optimal model, which is determined by the joint loss across the three methods, ultimately leading to the generation of an accurate prediction map. This approach not only helps to deeply explore the spectral spatial information in the hyperspectral data, but also effectively fuses the hyperspectral information with the elevation information from the LiDAR data. The expression ability of model features is rapidly improved by adaptive weighting, which in turn enhances the performance and generalisation ability of the model. Compared with some existing methods, extensive experiments on three popular HSI and LiDAR datasets show that our proposed AMSSE-Net can achieve better classification performance. The codes will be available at https://github.com/haofeng0003/AMSSE-Net, contributing to the RS community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助广发牛勿采纳,获得10
39秒前
48秒前
广发牛勿发布了新的文献求助10
55秒前
知行者完成签到 ,获得积分10
1分钟前
2分钟前
敉_应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
轩辕中蓝完成签到 ,获得积分10
2分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
迷茫的毕业少年完成签到,获得积分10
3分钟前
4分钟前
mzhang2完成签到 ,获得积分10
4分钟前
科研通AI5应助调皮帆布鞋采纳,获得10
4分钟前
4分钟前
科研老炮发布了新的文献求助10
4分钟前
丁爽发布了新的文献求助10
5分钟前
科研老炮完成签到,获得积分10
5分钟前
5分钟前
皮卡丘完成签到 ,获得积分10
5分钟前
斯文败类应助丁爽采纳,获得10
5分钟前
juan完成签到 ,获得积分10
5分钟前
紧张的海露完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
丁爽完成签到,获得积分20
6分钟前
郑绒绒完成签到 ,获得积分10
6分钟前
widesky777完成签到 ,获得积分0
7分钟前
7分钟前
华仔应助nnnn采纳,获得10
7分钟前
7分钟前
nnnn发布了新的文献求助10
7分钟前
cdercder应助nnnn采纳,获得10
8分钟前
8分钟前
小王发布了新的文献求助10
8分钟前
8分钟前
8分钟前
9分钟前
小王发布了新的文献求助20
9分钟前
10分钟前
科研通AI5应助科研通管家采纳,获得30
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843264
求助须知:如何正确求助?哪些是违规求助? 3385497
关于积分的说明 10540682
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710881
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308