Machine Learning Algorithms Predict Long-Term Postoperative Opioid Misuse: A Systematic Review

机器学习 布里氏评分 医学 算法 人工智能 奇纳 梅德林 决策树 逻辑回归 计算机科学 精神科 法学 政治学 心理干预
作者
Omar S. Emam,Abdullah S. Eldaly,Francisco R. Ávila,Ricardo A. Torres‐Guzman,Karla C. Maita,John P. Garcia,Sally A. Brown,Clifton R. Haider,Antonio J. Forte
出处
期刊:American Surgeon [SAGE]
卷期号:90 (1): 140-151 被引量:6
标识
DOI:10.1177/00031348231198112
摘要

Introduction A steadily rising opioid pandemic has left the US suffering significant social, economic, and health crises. Machine learning (ML) domains have been utilized to predict prolonged postoperative opioid (PPO) use. This systematic review aims to compile all up-to-date studies addressing such algorithms’ use in clinical practice. Methods We searched PubMed/MEDLINE, EMBASE, CINAHL, and Web of Science using the keywords “machine learning,” “opioid,” and “prediction.” The results were limited to human studies with full-text availability in English. We included all peer-reviewed journal articles that addressed an ML model to predict PPO use by adult patients. Results Fifteen studies were included with a sample size ranging from 381 to 112898, primarily orthopedic-surgery-related. Most authors define a prolonged misuse of opioids if it extends beyond 90 days postoperatively. Input variables ranged from 9 to 23 and were primarily preoperative. Most studies developed and tested at least two algorithms and then enhanced the best-performing model for use retrospectively on electronic medical records. The best-performing models were decision-tree-based boosting algorithms in 5 studies with AUC ranging from .81 to .66 and Brier scores ranging from .073 to .13, followed second by logistic regression classifiers in 5 studies. The topmost contributing variable was preoperative opioid use, followed by depression and antidepressant use, age, and use of instrumentation. Conclusions ML algorithms have demonstrated promising potential as a decision-supportive tool in predicting prolonged opioid use in post-surgical patients. Further validation studies would allow for their confident incorporation into daily clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助每㐬山风采纳,获得10
2秒前
乐观碧彤发布了新的文献求助10
3秒前
3秒前
杰老爷发布了新的文献求助30
5秒前
5秒前
7秒前
酷波er应助威武从霜采纳,获得10
8秒前
dodo完成签到 ,获得积分10
8秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
叶成会完成签到 ,获得积分10
14秒前
陌陌发布了新的文献求助10
17秒前
shelly7788发布了新的文献求助10
17秒前
bzlish发布了新的文献求助10
18秒前
19秒前
科研通AI6应助承一采纳,获得10
19秒前
快乐的画笔完成签到 ,获得积分10
19秒前
南知完成签到,获得积分10
20秒前
科研通AI6应助bzlish采纳,获得10
22秒前
科研通AI6应助bzlish采纳,获得10
22秒前
小马甲应助bzlish采纳,获得10
22秒前
嗷呜完成签到,获得积分10
22秒前
heart完成签到,获得积分10
23秒前
安晓慧完成签到 ,获得积分10
24秒前
25秒前
Lucas应助陌陌采纳,获得10
26秒前
26秒前
我是老大应助万物可爱采纳,获得10
30秒前
领导范儿应助v小飞侠101采纳,获得30
30秒前
30秒前
sanmu发布了新的文献求助10
31秒前
Ty完成签到,获得积分10
33秒前
35秒前
隐形曼青应助zhaojian采纳,获得10
36秒前
懦弱的安珊完成签到,获得积分10
37秒前
sanlunainiu发布了新的文献求助10
37秒前
英姑应助嘻嘻采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642700
求助须知:如何正确求助?哪些是违规求助? 4759529
关于积分的说明 15018532
捐赠科研通 4801206
什么是DOI,文献DOI怎么找? 2566533
邀请新用户注册赠送积分活动 1524546
关于科研通互助平台的介绍 1484071