医学
心脏病学
内科学
风险评估
肺动脉高压
重症监护医学
计算机科学
计算机安全
作者
Megan Griffiths,Catherine E. Simpson,Jun Yang,Dhananjay Vaidya,Melanie Nies,Stephanie Brandal,Rachel D’Amico,Paul M. Hassoun,D. Dunbar Ivy,Eric D. Austin,Michael W. Pauciulo,Katie A. Lutz,Lisa J. Martin,Erika B. Rosenzweig,Raymond L. Benza,William C. Nichols,Cedric Manlhiot,Allen D. Everett
出处
期刊:Chest
[Elsevier BV]
日期:2024-08-16
卷期号:166 (6): 1511-1531
标识
DOI:10.1016/j.chest.2024.06.3824
摘要
Risk assessment in pulmonary arterial hypertension (PAH) is fundamental to guiding treatment and improved outcomes. Clinical models are excellent at identifying high-risk patients, but leave uncertainty amongst moderate-risk patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI