甲胺磷
超纯水
光催化
降级(电信)
锌
环境化学
环境科学
水处理
化学
杀虫剂
环境工程
催化作用
农学
有机化学
生物
电信
计算机科学
作者
Harry R. Yucra Condori,Celia Choquenaira-Quispe,José Villanueva Salas,Elvis Gilmar Gonzales-Condori
出处
期刊:Energy nexus
[Elsevier]
日期:2024-07-14
卷期号:15: 100317-100317
被引量:1
标识
DOI:10.1016/j.nexus.2024.100317
摘要
Conventional agriculture and the need to satisfy the demand for food, cause different types of pesticides to be used indiscriminately, causing them to be dispersed into ecosystems by wind and water currents, representing a serious environmental problem. For this reason, it is important to apply effective technologies for the elimination of pesticides from water bodies. In the present research, heterogeneous photocatalysis using ZnO as a photocatalyst was applied to evaluate the degradation of methamidophos in contaminated water prepared in ultrapure water and river water. Considering the working parameters of 3 g/L of zinc oxide, a concentration of 50 mg/L of methamidophos, with constant agitation of 300 rpm, temperature 25 ± 2 °C and a natural pH, methamidophos degradation percentages of 86.66 % and 57.96 % were achieved in ultrapure water and river water, respectively. The chloride, sulfates, nitrates, and nitrites anions present in the river water could be responsible for the decrease in the effectiveness of the photocatalytic process. The mathematical models that best describe the degradation process were the pseudo-second order model and the Elovich model.
科研通智能强力驱动
Strongly Powered by AbleSci AI