Cross-subject emotion recognition in brain-computer interface based on frequency band attention graph convolutional adversarial neural networks

计算机科学 脑电图 脑-机接口 模式识别(心理学) 人工智能 卷积神经网络 对抗制 图形 接口(物质) 自然语言处理 语音识别 神经科学 心理学 理论计算机科学 气泡 最大气泡压力法 并行计算
作者
Shinan Chen,Yuchen Wang,Xuefen Lin,Xiaoyong Sun,Weihua Li,Weifeng Ma
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:411: 110276-110276
标识
DOI:10.1016/j.jneumeth.2024.110276
摘要

Emotion is an important area in neuroscience. Cross-subject emotion recognition based on electroencephalogram (EEG) data is challenging due to physiological differences between subjects. Domain gap, which refers to the different distributions of EEG data at different subjects, has attracted great attention for cross-subject emotion recognition. This study focuses on narrowing the domain gap between subjects through the emotional frequency bands and the relationship information between EEG channels. Emotional frequency band features represent the energy distribution of EEG data in different frequency ranges, while relationship information between EEG channels provides spatial distribution information about EEG data. To achieve this, this paper proposes a model called the Frequency Band Attention Graph convolutional Adversarial neural Network (FBAGAN). This model includes three components: a feature extractor, a classifier, and a discriminator. The feature extractor consists of a layer with a frequency band attention mechanism and a graph convolutional neural network. The mechanism effectively extracts frequency band information by assigning weights and Graph Convolutional Networks can extract relationship information between EEG channels by modeling the graph structure. The discriminator then helps minimize the gap in the frequency information and relationship information between the source and target domains, improving the model's ability to generalize. The FBAGAN model is extensively tested on the SEED, SEED-IV, and DEAP datasets. The accuracy and standard deviation scores are 88.17% and 4.88, respectively, on the SEED dataset, and 77.35% and 3.72 on the SEED-IV dataset. On the DEAP dataset, the model achieves 69.64% for Arousal and 65.18% for Valence. These results outperform most existing models. The experiments indicate that FBAGAN effectively addresses the challenges of transferring EEG channel domain and frequency band domain, leading to improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
montecount完成签到,获得积分10
1秒前
坦率尔琴完成签到,获得积分10
1秒前
清爽电脑完成签到,获得积分10
3秒前
可爱的函函应助坦率尔琴采纳,获得10
4秒前
jiabu完成签到 ,获得积分10
5秒前
6秒前
SJAW完成签到,获得积分10
7秒前
往前走别回头完成签到,获得积分10
7秒前
CodeCraft应助qiang采纳,获得10
7秒前
开心的太清完成签到,获得积分10
10秒前
牛牛眉目发布了新的文献求助10
11秒前
潇洒的问夏完成签到,获得积分10
12秒前
扑火退羽完成签到,获得积分10
14秒前
jason完成签到,获得积分10
14秒前
小星星完成签到 ,获得积分10
19秒前
lalala完成签到 ,获得积分10
19秒前
20秒前
鱼咬羊完成签到,获得积分10
20秒前
22秒前
京运完成签到,获得积分20
22秒前
张雷应助科研鸟采纳,获得10
23秒前
24秒前
24秒前
京运发布了新的文献求助10
25秒前
26秒前
26秒前
跳跳虎发布了新的文献求助10
27秒前
噼里啪啦完成签到,获得积分10
28秒前
高源源发布了新的文献求助10
28秒前
愉快迎南完成签到,获得积分10
29秒前
Hello应助太叔若南采纳,获得10
29秒前
自由的傲易完成签到,获得积分10
29秒前
30秒前
31秒前
安笙凉城发布了新的文献求助10
31秒前
NexusExplorer应助娟娟采纳,获得10
33秒前
烟花应助杜兰特采纳,获得10
34秒前
一直发布了新的文献求助10
36秒前
赘婿应助高源源采纳,获得10
37秒前
lr完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361