DMAMP: A deep-learning model for detecting antimicrobial peptides and their multi-activities

抗菌肽 任务(项目管理) 抗菌剂 卷积神经网络 鉴定(生物学) 领域(数学) 人工智能 深度学习 残余物 计算机科学 模式识别(心理学) 机器学习 生物 微生物学 数学 算法 工程类 植物 系统工程 纯数学
作者
Qiaozhen Meng,Genlang Chen,Bin Lin,Shixin Zheng,Yueyu Lin,Jijun Tang,Fei Guo
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 2025-2034 被引量:3
标识
DOI:10.1109/tcbb.2024.3439541
摘要

Due to the broad-spectrum and high-efficiency antibacterial activity, antimicrobial peptides (AMPs) and their functions have been studied in the field of drug discovery. Using biological experiments to detect the AMPs and corresponding activities require a high cost, whereas computational technologies do so for much less. Currently, most computational methods solve the identification of AMPs and their activities as two independent tasks, which ignore the relationship between them. Therefore, the combination and sharing of patterns for two tasks is a crucial problem that needs to be addressed. In this study, we propose a deep learning model, called DMAMP, for detecting AMPs and activities simultaneously, which is benefited from multi-task learning. The first stage is to utilize convolutional neural network models and residual blocks to extract the sharing hidden features from two related tasks. The next stage is to use two fully connected layers to learn the distinct information of two tasks. Meanwhile, the original evolutionary features from the peptide sequence are also fed to the predictor of the second task to complement the forgotten information. The experiments on the independent test dataset demonstrate that our method performs better than the single-task model with 4.28% of Matthews Correlation Coefficient (MCC) on the first task, and achieves 0.2627 of an average MCC which is higher than the single-task model and two existing methods for five activities on the second task. To understand whether features derived from the convolutional layers of models capture the differences between target classes, we visualize these high-dimensional features by projecting into 3D space. In addition, we show that our predictor has the ability to identify peptides that achieve activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). We hope that our proposed method can give new insights into the discovery of novel antiviral peptide drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助麦哎采纳,获得10
2秒前
断章发布了新的文献求助10
2秒前
万能的土豆完成签到,获得积分10
4秒前
wuye发布了新的文献求助10
5秒前
Wuwuwu应助ccc采纳,获得10
7秒前
9秒前
9秒前
Ameema完成签到,获得积分10
11秒前
搜集达人应助勤恳的依珊采纳,获得10
13秒前
oboy应助tantan采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
sakura完成签到,获得积分10
17秒前
能干澜完成签到 ,获得积分10
18秒前
Obliviate完成签到,获得积分10
19秒前
ywzwszl完成签到,获得积分10
20秒前
21秒前
小羊zhou完成签到,获得积分10
21秒前
任性发布了新的文献求助10
24秒前
ggxhygr完成签到,获得积分10
25秒前
奋斗慕凝完成签到 ,获得积分10
25秒前
28秒前
与月同行完成签到,获得积分10
29秒前
kkk发布了新的文献求助20
30秒前
tantan完成签到,获得积分10
31秒前
肉酱完成签到 ,获得积分10
32秒前
来ll发布了新的文献求助10
32秒前
34秒前
画龙完成签到,获得积分10
34秒前
34秒前
香蕉觅云应助宣荆采纳,获得30
35秒前
粗犷的灵松完成签到 ,获得积分10
36秒前
40秒前
41秒前
瓜酱酱完成签到,获得积分10
41秒前
42秒前
43秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785709
求助须知:如何正确求助?哪些是违规求助? 3331153
关于积分的说明 10250327
捐赠科研通 3046583
什么是DOI,文献DOI怎么找? 1672134
邀请新用户注册赠送积分活动 801008
科研通“疑难数据库(出版商)”最低求助积分说明 759979