DMAMP: A deep-learning model for detecting antimicrobial peptides and their multi-activities

抗菌肽 任务(项目管理) 抗菌剂 卷积神经网络 鉴定(生物学) 领域(数学) 人工智能 深度学习 残余物 计算机科学 模式识别(心理学) 机器学习 生物 微生物学 数学 算法 工程类 植物 系统工程 纯数学
作者
Qiaozhen Meng,Genlang Chen,Bin Lin,Shixin Zheng,Yueyu Lin,Jijun Tang,Fei Guo
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 2025-2034 被引量:3
标识
DOI:10.1109/tcbb.2024.3439541
摘要

Due to the broad-spectrum and high-efficiency antibacterial activity, antimicrobial peptides (AMPs) and their functions have been studied in the field of drug discovery. Using biological experiments to detect the AMPs and corresponding activities require a high cost, whereas computational technologies do so for much less. Currently, most computational methods solve the identification of AMPs and their activities as two independent tasks, which ignore the relationship between them. Therefore, the combination and sharing of patterns for two tasks is a crucial problem that needs to be addressed. In this study, we propose a deep learning model, called DMAMP, for detecting AMPs and activities simultaneously, which is benefited from multi-task learning. The first stage is to utilize convolutional neural network models and residual blocks to extract the sharing hidden features from two related tasks. The next stage is to use two fully connected layers to learn the distinct information of two tasks. Meanwhile, the original evolutionary features from the peptide sequence are also fed to the predictor of the second task to complement the forgotten information. The experiments on the independent test dataset demonstrate that our method performs better than the single-task model with 4.28% of Matthews Correlation Coefficient (MCC) on the first task, and achieves 0.2627 of an average MCC which is higher than the single-task model and two existing methods for five activities on the second task. To understand whether features derived from the convolutional layers of models capture the differences between target classes, we visualize these high-dimensional features by projecting into 3D space. In addition, we show that our predictor has the ability to identify peptides that achieve activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). We hope that our proposed method can give new insights into the discovery of novel antiviral peptide drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助小南采纳,获得10
1秒前
bkagyin应助QinQin采纳,获得10
1秒前
Owen应助xxn采纳,获得10
1秒前
遇见完成签到,获得积分20
3秒前
4秒前
云野发布了新的文献求助10
4秒前
wzc完成签到,获得积分10
5秒前
wyh完成签到,获得积分10
8秒前
axiao完成签到,获得积分10
8秒前
好想走到伯纳乌完成签到,获得积分10
9秒前
9秒前
川泽发布了新的文献求助30
10秒前
11秒前
华仔应助云野采纳,获得10
11秒前
难过的谷芹发布了新的文献求助200
13秒前
13秒前
xxn发布了新的文献求助10
14秒前
李健应助李李李采纳,获得10
14秒前
14秒前
Lau完成签到,获得积分20
15秒前
Zoo应助胡凤至采纳,获得20
15秒前
ccx981166完成签到,获得积分10
16秒前
王杰发布了新的文献求助20
16秒前
16秒前
17秒前
杏林小郑完成签到 ,获得积分10
18秒前
咕董咕董发布了新的文献求助20
19秒前
Dr.coco发布了新的文献求助10
20秒前
清爽指甲油完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
NetSenior完成签到,获得积分10
24秒前
热心醉蝶应助钟ZJ采纳,获得10
24秒前
李馥莼发布了新的文献求助10
26秒前
27秒前
27秒前
王轶兆发布了新的文献求助10
28秒前
城南发布了新的文献求助10
29秒前
任浩发布了新的文献求助10
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110621
求助须知:如何正确求助?哪些是违规求助? 3649026
关于积分的说明 11557786
捐赠科研通 3354255
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909036
科研通“疑难数据库(出版商)”最低求助积分说明 825914