Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid

生物生产 代谢工程 大肠杆菌 生物化学 代谢途径 生物制造 合成生物学 蛋白质工程 生物过程 生物反应器 化学 生产过剩 生物技术 生物 计算生物学 基因 古生物学 有机化学
作者
Wei Pu,Jiuzhou Chen,Yingyu Zhou,H. Qiu,Shi Tang,Wenjuan Zhou,Xuan Guo,Ningyun Cai,Zijian Tan,Jiao Liu,Jinhui Feng,Yu Wang,Ping Zheng,Jibin Sun
出处
期刊:Biotechnology for biofuels and bioproducts [Springer Nature]
卷期号:16 (1) 被引量:4
标识
DOI:10.1186/s13068-023-02280-9
摘要

Abstract Background 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. Results In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli . Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. Conclusions An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜雨莲发布了新的文献求助10
刚刚
3秒前
3秒前
3秒前
丘比特应助chan采纳,获得10
4秒前
自信的汉堡完成签到,获得积分10
4秒前
Hustler完成签到,获得积分10
5秒前
Owen应助hopen采纳,获得10
5秒前
我说我话完成签到 ,获得积分10
6秒前
张张发布了新的文献求助10
6秒前
食野之苹发布了新的文献求助10
7秒前
科研通AI6应助兴奋的雪糕采纳,获得10
7秒前
英姑应助gouqi采纳,获得20
8秒前
小滨发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助zkyyinf_zero采纳,获得10
9秒前
科研通AI6应助刁刁采纳,获得10
10秒前
10秒前
浮游应助快乐的钢笔采纳,获得10
12秒前
科目三应助阔达以南采纳,获得200
12秒前
12秒前
科研通AI6应助乐观幻儿采纳,获得30
12秒前
sjfczyh发布了新的文献求助10
14秒前
甜甜雨莲完成签到,获得积分20
14秒前
15秒前
Tammy完成签到,获得积分10
16秒前
16秒前
16秒前
情怀应助一碗鱼采纳,获得10
17秒前
食野之苹完成签到,获得积分10
18秒前
18秒前
kk发布了新的文献求助10
18秒前
hm5751682完成签到,获得积分10
19秒前
19秒前
20秒前
等待的秋双完成签到,获得积分10
20秒前
sjfczyh发布了新的文献求助10
20秒前
20秒前
chai发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566392
求助须知:如何正确求助?哪些是违规求助? 4651181
关于积分的说明 14695302
捐赠科研通 4593195
什么是DOI,文献DOI怎么找? 2520029
邀请新用户注册赠送积分活动 1492366
关于科研通互助平台的介绍 1463472