费斯特共振能量转移
纳米探针
化学
毛皮
药物输送
荧光
生物物理学
荧光团
阿霉素
纳米技术
纳米颗粒
生物化学
化疗
材料科学
外科
有机化学
酶
物理
生物
医学
量子力学
作者
Wenxin Li,Li Sun,Xiaofei Zheng,Fen Li,Wenyue Zhang,Tao Li,Yingshu Guo,Dianping Tang
标识
DOI:10.1021/acs.analchem.3c01416
摘要
Triple-negative breast cancer is particularly difficult to treat because of its high degree of malignancy and poor prognosis. A fluorescence resonance energy transfer (FRET) nanoplatform plays a very important role in disease diagnosis and treatment due to its unique detection performance. Combining the properties of agglomeration-induced emission fluorophore and FRET pair, a FRET nanoprobe (HMSN/DOX/RVRR/PAMAM/TPE) induced by specific cleavage was designed. First, hollow mesoporous silica nanoparticles (HMSNs) were used as drug carriers to load doxorubicin (DOX). HMSN nanopores were coated with the RVRR peptide. Then, polyamylamine/phenylethane (PAMAM/TPE) was combined in the outermost layer. When Furin cut off the RVRR peptide, DOX was released and adhered to PAMAM/TPE. Finally, the TPE/DOX FRET pair was constituted. The overexpression of Furin in the triple-negative breast cancer cell line (MDA-MB-468 cell) can be quantitatively detected by FRET signal generation, so as to monitor cell physiology. In conclusion, the HMSN/DOX/RVRR/PAMAM/TPE nanoprobes were designed to provide a new idea for the quantitative detection of Furin and drug delivery, which is conducive to the early diagnosis and treatment of triple-negative breast cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI