Multispecies Machine Learning Predictions of In Vitro Intrinsic Clearance with Uncertainty Quantification Analyses

不确定度量化 体外 化学 生物系统 计算生物学 生物物理学 人工智能 计算机科学 机器学习 生物 生物化学
作者
Raquel Rodríguez-Pérez,Markus Trunzer,Nadine Schneider,Bernard Faller,Grégori Gerebtzoff
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:20 (1): 383-394 被引量:32
标识
DOI:10.1021/acs.molpharmaceut.2c00680
摘要

In pharmaceutical research, compounds are optimized for metabolic stability to avoid a too fast elimination of the drug. Intrinsic clearance (CLint) measured in liver microsomes or hepatocytes is an important parameter during lead optimization. In this work, machine learning models were developed to relate the compound structure to microsomal metabolic stability and predict CLint for new compounds. A multitask (MT) learning architecture was introduced to model the CLint of six species simultaneously, giving as a result a multispecies machine learning model. MT graph neural network (MT-GNN) regression was identified as the top-performing method, and an ensemble of 10 MT-GNN models was evaluated prospectively. Geometric mean fold errors were consistently smaller than 2-fold. Moreover, high precision values were obtained in the prediction of "high" (>300 μL/min/mg) and "low" (<100 μL/min/mg) CLint compounds. Precision values ranged from 80 to 94% for low CLint predictions and from 75 to 97% for high CLint predictions, depending on the species. Uncertainty on experimental values and model predictions was systematically quantified. Experimental variability (aleatoric uncertainty) of all historical Novartis in vitro clearance experiments was analyzed. Interestingly, MT-GNN models' performance approached assays' experimental variability. Moreover, uncertainty estimation in predictions (epistemic uncertainty) enabled identifying predictions associated with lower and higher error. Taken together, our manuscript combines a multispecies deep learning model and large-scale uncertainty analyses to improve CLint predictions and facilitate early informed decisions for compound prioritization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张张小白发布了新的文献求助10
1秒前
无极微光应助xiaofei采纳,获得20
1秒前
Roksan发布了新的文献求助30
1秒前
自觉的躺平完成签到,获得积分10
3秒前
SciGPT应助瞿人雄采纳,获得10
3秒前
陈露佳发布了新的文献求助10
3秒前
黄启烽发布了新的文献求助10
4秒前
5秒前
寻道图强应助aijians采纳,获得50
5秒前
kk完成签到,获得积分10
6秒前
zgaolei完成签到,获得积分10
6秒前
宋真玉完成签到 ,获得积分10
7秒前
恒星的恒心完成签到 ,获得积分10
7秒前
xiaoqin完成签到 ,获得积分10
8秒前
8秒前
月流瓦发布了新的文献求助20
8秒前
9秒前
ding应助辛勤的映波采纳,获得10
9秒前
10秒前
超帅巧曼发布了新的文献求助10
10秒前
张德美发布了新的文献求助10
10秒前
自由雁菡完成签到,获得积分10
11秒前
Roksan完成签到,获得积分10
12秒前
小吴发布了新的文献求助20
13秒前
蓝色天空完成签到,获得积分10
13秒前
田様应助优美紫槐采纳,获得10
13秒前
15秒前
ttt完成签到,获得积分10
16秒前
16秒前
17秒前
蚊蚊爱读书应助陈露佳采纳,获得20
19秒前
桐桐应助lzzmy采纳,获得10
19秒前
鲜于冰彤完成签到,获得积分10
20秒前
20秒前
林洁佳完成签到,获得积分10
21秒前
CipherSage应助月流瓦采纳,获得10
21秒前
小韩发布了新的文献求助10
21秒前
22秒前
sss完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602464
求助须知:如何正确求助?哪些是违规求助? 4687579
关于积分的说明 14850100
捐赠科研通 4684136
什么是DOI,文献DOI怎么找? 2539896
邀请新用户注册赠送积分活动 1506630
关于科研通互助平台的介绍 1471428