Computational and pharmacogenomic resources

药物基因组学 药物数据库 药物反应 个性化医疗 计算生物学 药品 系统药理学 药物发现 药物开发 生物信息学 生物 计算机科学 药理学
作者
Ishteyaq Majeed Shah,Aarif Ali,Rasy Fayaz Choh Wani,Bashir Ahmad Malla,Mashooq Ahmad Dar,Adil Farooq Wali,Maroof Ahmad
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 345-362
标识
DOI:10.1016/b978-0-443-15336-5.00005-1
摘要

With recent advances in the scientific world, drug design, drug work, and metabolism have been revolutionized. A “one-size-fits-all” model for drug distribution is faulty because there is significant heterogeneity in drug-response characteristics. The goal of pharmacogenomics is to increase therapeutic efficacy and minimize negative effects by examining how human genetic information affects drug response. The field of pharmacogenomics under which comprises of pharmacokinetics (PK) and pharmacodynamics (PD) has been revolutionized by well-established fields such as molecular modeling, computational biology, computational tools, computer-aided drug design (CADD), structure-based drug design (SBDD), ligand-based drug design (LBDD), C2Maps, and traditional Chinese medicine systems pharmacology database and analytic platform (TCMSP). Pharmacogenomic resources, which include Pharmacogenomics Knowledge Base (PharmGKB), Pharmacogene Variation (PharmVar), DrugBank, SCAN and PACdb, Genotype-Cytotoxicity Association, Human Cytochrome P450 database, etc., are the backbone in the development design and metabolism of drugs. With these resources and associated fields, the construction of drugs on one’s genome specificity is giving leads all the way. The field of pharmacogenomics is leading from the front for the treatment and eradication of serious illness through the construction of personalized drugs by considering genome specificity. The computational approaches are more commonly used to identify disease-causing variants; however, their impact is quite less on variant drug response. Until now, a few algorithms have been developed to predict the effect of pharmacogenomic variations. Bioinformatics and pharmacogenomics are the two emerging fields that have a positive impact and decrease the risk along with overall cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜玫瑰应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
ZhouYW应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
ZhouYW应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得50
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
Jianismye完成签到,获得积分10
5秒前
卡卡西应助夏之采纳,获得30
5秒前
6秒前
vchen0621发布了新的文献求助10
7秒前
F7erxl完成签到,获得积分10
15秒前
15秒前
shuo0976完成签到,获得积分10
15秒前
斯文败类应助杨春末采纳,获得10
15秒前
Carmen发布了新的文献求助10
16秒前
17秒前
17秒前
56关闭了56文献求助
19秒前
21秒前
22秒前
22秒前
Ashui发布了新的文献求助20
22秒前
22秒前
淡蓝蓝蓝发布了新的文献求助10
22秒前
23秒前
CipherSage应助21采纳,获得10
24秒前
mslln发布了新的文献求助10
25秒前
sissi225发布了新的文献求助10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814385
求助须知:如何正确求助?哪些是违规求助? 3358503
关于积分的说明 10395440
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 812995
科研通“疑难数据库(出版商)”最低求助积分说明 767428