TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field

杂草 作物 领域(数学) 农学 生物 环境科学 数学 纯数学
作者
Aichen Wang,Peng Tao,Huadong Cao,Yifei Xu,Xinhua Wei,Bingbo Cui
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:13 被引量:39
标识
DOI:10.3389/fpls.2022.1091655
摘要

Development of weed and crop detection algorithms provides theoretical support for weed control and becomes an effective tool for the site-specific weed management. For weed and crop object detection tasks in the field, there is often a large difference between the number of weed and crop, resulting in an unbalanced distribution of samples and further posing difficulties for the detection task. In addition, most developed models tend to miss the small weed objects, leading to unsatisfied detection results. To overcome these issues, we proposed a pixel-level synthesization data augmentation method and a TIA-YOLOv5 network for weed and crop detection in the complex field environment.The pixel-level synthesization data augmentation method generated synthetic images by pasting weed pixels into original images. In the TIA-YOLOv5, a transformer encoder block was added to the backbone to improve the sensitivity of the model to weeds, a channel feature fusion with involution (CFFI) strategy was proposed for channel feature fusion while reducing information loss, and adaptive spatial feature fusion (ASFF) was introduced for feature fusion of different scales in the prediction head.Test results with a publicly available sugarbeet dataset showed that the proposed TIA-YOLOv5 network yielded an F1-scoreweed, APweed and mAP@0.5 of 70.0%, 80.8% and 90.0%, respectively, which was 11.8%, 11.3% and 5.9% higher than the baseline YOLOv5 model. And the detection speed reached 20.8 FPS.In this paper, a fast and accurate workflow including a pixel-level synthesization data augmentation method and a TIA-YOLOv5 network was proposed for real-time weed and crop detection in the field. The proposed method improved the detection accuracy and speed, providing very promising detection results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
失眠醉易完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
陈子皮boy发布了新的文献求助10
4秒前
飞快的雨琴完成签到,获得积分10
4秒前
大个应助彬瑞采纳,获得10
5秒前
乐观羽毛球应助cistronic采纳,获得10
5秒前
jyzxzr发布了新的文献求助10
5秒前
6秒前
打打应助jiangqin123采纳,获得10
6秒前
ymx发布了新的文献求助10
6秒前
6秒前
LLL发布了新的文献求助30
6秒前
酸奶巧克力完成签到,获得积分10
7秒前
miya完成签到,获得积分10
7秒前
7秒前
asakarum发布了新的文献求助10
8秒前
8秒前
来一起做朋友吧完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
liuhang发布了新的文献求助10
10秒前
Hello应助Ashley采纳,获得10
11秒前
lilac完成签到,获得积分10
11秒前
11秒前
LF发布了新的文献求助10
12秒前
研友_nEj9DZ发布了新的文献求助30
12秒前
xia发布了新的文献求助10
13秒前
13秒前
lixiaolu发布了新的文献求助60
13秒前
echo完成签到,获得积分10
14秒前
李爱国应助chang采纳,获得10
15秒前
小作坊钳工完成签到,获得积分10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978