Hydrogel Electrolyte-Mediated In Situ Zn-Anode Modification and the Ru-RuO2/NGr-Coated Cathode for High-Performance Solid-State Rechargeable Zn–Air Batteries

材料科学 电解质 阳极 化学工程 双功能 钝化 催化作用 析氧 表面改性 纳米颗粒 无机化学 纳米技术 电极 电化学 化学 工程类 物理化学 生物化学 图层(电子)
作者
Geeta Pandurang Kharabe,Tushar Verma,Sidharth Barik,Rajashri R. Urkude,Ayasha Nadeema,Biplab Ghosh,Saïlaja Krishnamurty,Sreekumar Kurungot
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c14231
摘要

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc–air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO2 interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO2/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.e., oxygen reduction and evolution reactions (ORR and OER), with a very low potential difference (ΔE) of 0.64 V. The computational insights bring out the electronic factors contributing to the enhanced catalytic activity of Ru-RuO2/NGr based on the charge density difference (CDD) between the interfaces. The disadvantages of the existing solid-state RZABs, such as their limited lifespan brought on by passivation, dendritic growth, corrosion, and shape change, have also been taken into account. The introduction of the stannate additive to the electrolyte induced an in situ Zn-anode modification, which subsequently improved the interfacial stability of the ZABs and, hence, the battery life cycles. The experimental observations reveal that, during the charging process, the Sn nanoparticles enable the homogeneous Zn deposition on the surface of the anode. Thus, the in situ Zn-anode surface modification assisted in achieving a high-rate cycle capability, viz., the homemade catalyst-based system exhibited continuous charge–discharge cycles for 20 h at a current density of 2.0 mA cm–2, with each cycle lasting for 5 min.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swan发布了新的文献求助10
刚刚
楼迎荷完成签到,获得积分10
刚刚
杨家辉完成签到,获得积分20
刚刚
斯文败类应助雪山飞虹采纳,获得10
3秒前
顾矜应助激情的士萧采纳,获得10
3秒前
FashionBoy应助糯米糍采纳,获得10
4秒前
慕青应助务实的南露采纳,获得10
5秒前
SYLH应助ComeOn采纳,获得10
6秒前
NexusExplorer应助Tzzl0226采纳,获得10
7秒前
称心曼安应助木头马尾采纳,获得10
8秒前
8秒前
8秒前
无痕完成签到,获得积分10
12秒前
12秒前
orixero应助Yh_alive采纳,获得10
13秒前
13秒前
15秒前
15秒前
shanp发布了新的文献求助10
16秒前
16秒前
格物致理完成签到,获得积分10
16秒前
称心曼安应助糯米糍采纳,获得10
18秒前
慕青应助火火火采纳,获得10
19秒前
BBzc发布了新的文献求助10
20秒前
酷酷隶完成签到,获得积分20
21秒前
小蘑菇应助YYMM采纳,获得10
22秒前
雪山飞虹发布了新的文献求助10
22秒前
junmahmu完成签到,获得积分10
22秒前
共享精神应助luyao采纳,获得10
23秒前
11111发布了新的文献求助10
24秒前
25秒前
26秒前
hu完成签到,获得积分10
26秒前
26秒前
28秒前
善良的宛凝完成签到,获得积分10
28秒前
29秒前
29秒前
SMG发布了新的文献求助30
30秒前
JAKEyy完成签到,获得积分10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608