亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combination of Transfer Learning and Chemprop Interpreter with Support of Deep Learning for the Energy Levels of Organic Photovoltaic Materials Prediction and Regulation

光伏系统 材料科学 学习迁移 能量转移 翻译 能量(信号处理) 工程物理 纳米技术 人工智能 计算机科学 电气工程 工程类 数学 统计 程序设计语言
作者
Cong Nie,Kuo Wang,Haixin Zhou,Jiahao Deng,Ziye Chen,Kang Zhang,Lingjiao Chen,Di Huang,Jiaojiao Liang,Ling Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (48): 66316-66326 被引量:6
标识
DOI:10.1021/acsami.4c15835
摘要

It is challenging to build a deep learning predictive model using traditional data mining methods due to the scarcity of available data, and the model's internal decision-making process is often nonintuitive and difficult to explain. In this work, a directed message passing neural network model with transfer learning (TL) and chemprop interpreter is proposed to improve energy levels prediction and visualization for organic photovoltaic materials. The established model shows the best performance, with coefficient of determination reaching 0.787 for HOMO and 0.822 for LUMO in a small testing set after TL, compared to the other four models. Then, the chemprop interpreter analyzes local and global effects of 12 molecular structures on the energy levels for organic materials. After a comprehensive analysis of the energy level effects of nonfullerene Y-series, IT-series, and other organic materials, 12 new IT-series derivatives are designed. 1,1-dicyano-methylene-3-indanone (IC) end group halogenation can reduce HOMO and LUMO energy levels to varying degrees, while IC end group modified by electron-withdrawing aromatic groups can increase HOMO and LUMO energy levels and obtain relatively smaller electrostatic potential (ESP) to reducing intermolecular interactions. The influence of side-chain modification on energy levels is limited. It is worth mentioning that the predicted results of IT-series derivatives match density functional theory calculations. The model also shows good generalization and transferability for predicting the energy levels of other organic electronic materials. This work not only provides a cost-effective model for predicting the energy levels of organic photovoltaic materials but also explains the potential bridge between molecular structure and electronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科目三应助小冉采纳,获得10
35秒前
43秒前
浮游应助科研通管家采纳,获得10
44秒前
Ava应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
45秒前
小冉发布了新的文献求助10
48秒前
1分钟前
1分钟前
1分钟前
1分钟前
在水一方完成签到 ,获得积分0
1分钟前
fhw完成签到 ,获得积分10
1分钟前
阿波呲的额佛歌完成签到,获得积分10
1分钟前
张飞飞飞飞飞应助kli采纳,获得30
1分钟前
白华苍松发布了新的文献求助10
1分钟前
SciGPT应助求学狗采纳,获得10
1分钟前
zsmj23完成签到 ,获得积分0
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
Attaa完成签到,获得积分10
2分钟前
敏感煎蛋完成签到,获得积分20
3分钟前
3分钟前
求学狗发布了新的文献求助10
3分钟前
blenx完成签到,获得积分10
3分钟前
AurorY发布了新的文献求助20
3分钟前
AurorY完成签到,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
四天垂完成签到 ,获得积分10
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502956
求助须知:如何正确求助?哪些是违规求助? 4598639
关于积分的说明 14464705
捐赠科研通 4532278
什么是DOI,文献DOI怎么找? 2483876
邀请新用户注册赠送积分活动 1467084
关于科研通互助平台的介绍 1439775