Combination of Transfer Learning and Chemprop Interpreter with Support of Deep Learning for the Energy Levels of Organic Photovoltaic Materials Prediction and Regulation

光伏系统 材料科学 学习迁移 能量转移 翻译 能量(信号处理) 工程物理 纳米技术 人工智能 计算机科学 电气工程 工程类 统计 数学 程序设计语言
作者
Cong Nie,Kuo Wang,Haixin Zhou,Jiahao Deng,Ziye Chen,Kang Zhang,Lingjiao Chen,Di Huang,Jiaojiao Liang,Ling Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c15835
摘要

It is challenging to build a deep learning predictive model using traditional data mining methods due to the scarcity of available data, and the model's internal decision-making process is often nonintuitive and difficult to explain. In this work, a directed message passing neural network model with transfer learning (TL) and chemprop interpreter is proposed to improve energy levels prediction and visualization for organic photovoltaic materials. The established model shows the best performance, with coefficient of determination reaching 0.787 for HOMO and 0.822 for LUMO in a small testing set after TL, compared to the other four models. Then, the chemprop interpreter analyzes local and global effects of 12 molecular structures on the energy levels for organic materials. After a comprehensive analysis of the energy level effects of nonfullerene Y-series, IT-series, and other organic materials, 12 new IT-series derivatives are designed. 1,1-dicyano-methylene-3-indanone (IC) end group halogenation can reduce HOMO and LUMO energy levels to varying degrees, while IC end group modified by electron-withdrawing aromatic groups can increase HOMO and LUMO energy levels and obtain relatively smaller electrostatic potential (ESP) to reducing intermolecular interactions. The influence of side-chain modification on energy levels is limited. It is worth mentioning that the predicted results of IT-series derivatives match density functional theory calculations. The model also shows good generalization and transferability for predicting the energy levels of other organic electronic materials. This work not only provides a cost-effective model for predicting the energy levels of organic photovoltaic materials but also explains the potential bridge between molecular structure and electronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
阔达衬衫发布了新的文献求助10
3秒前
zhangyu6160发布了新的文献求助10
4秒前
5秒前
6秒前
hyshen发布了新的文献求助10
7秒前
斯文败类应助科研通管家采纳,获得10
8秒前
归尘应助科研通管家采纳,获得100
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
666发布了新的文献求助10
10秒前
Suntyu完成签到,获得积分10
12秒前
灰化土完成签到,获得积分10
12秒前
12秒前
搜集达人应助黎小静采纳,获得10
13秒前
pumpkin发布了新的文献求助10
13秒前
小晖晖完成签到,获得积分10
13秒前
科研通AI2S应助Yi采纳,获得10
15秒前
orixero应助pumpkin采纳,获得10
17秒前
算了飞发布了新的文献求助10
17秒前
ldmr发布了新的文献求助10
17秒前
Yiy完成签到 ,获得积分10
18秒前
JamesPei应助zzk采纳,获得10
19秒前
木林森林木完成签到 ,获得积分10
19秒前
21秒前
Bismarck发布了新的文献求助10
22秒前
ldmr完成签到,获得积分10
24秒前
SWEETYXY发布了新的文献求助10
25秒前
黎小静发布了新的文献求助10
27秒前
32秒前
36秒前
39秒前
Keyl完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385