RNN-Based Models for Predicting Seizure Onset in Epileptic Patients

癫痫发作 癫痫 心理学 神经科学
作者
Mathan Kumar Mounagurusamy,V S Thiyagarajan,Abdur Rahman,Shravan Chandak,D. Balaji,Venkateswara Rao Jallepalli
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.16334
摘要

Early management and better clinical outcomes for epileptic patients depend on seizure prediction. The accuracy and false alarm rates of existing systems are often compromised by their dependence on static thresholds and basic Electroencephalogram (EEG) properties. A novel Recurrent Neural Network (RNN)-based method for seizure start prediction is proposed in the article to overcome these limitations. As opposed to conventional techniques, the proposed system makes use of Long Short-Term Memory (LSTM) networks to extract temporal correlations from unprocessed EEG data. It enables the system to adapt dynamically to the unique EEG patterns of each patient, improving prediction accuracy. The methodology of the system comprises thorough data collecting, preprocessing, and LSTM-based feature extraction. Annotated EEG datasets are then used for model training and validation. Results show a considerable reduction in false alarm rates (average of 6.8%) and an improvement in prediction accuracy (90.2% sensitivity, 88.9% specificity, and AUC-ROC of 93). Additionally, computational efficiency is significantly higher than that of existing systems (12 ms processing time, 45 MB memory consumption). About improving seizure prediction reliability, these results demonstrate the effectiveness of the proposed RNN-based strategy, opening up possibilities for its practical application to improve epilepsy treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助wanghuanjxx采纳,获得10
1秒前
lan发布了新的文献求助10
2秒前
赵赵完成签到,获得积分10
2秒前
所所应助小小采纳,获得10
3秒前
kk发布了新的文献求助10
3秒前
燕子发布了新的文献求助10
3秒前
4秒前
FlipFlops完成签到,获得积分10
4秒前
4秒前
莓烦恼完成签到 ,获得积分10
4秒前
5秒前
红叶发布了新的文献求助10
6秒前
Christina完成签到,获得积分10
6秒前
叩桥不渡完成签到,获得积分10
7秒前
8秒前
FashionBoy应助雯子采纳,获得10
8秒前
8秒前
Tycoon发布了新的文献求助10
9秒前
咕咕咕完成签到,获得积分10
9秒前
9秒前
lan完成签到,获得积分10
9秒前
香蕉八宝粥完成签到,获得积分10
9秒前
动漫大师发布了新的文献求助10
10秒前
10秒前
10秒前
化尾鱼完成签到,获得积分10
11秒前
眯眯眼的飞莲完成签到,获得积分10
11秒前
在水一方应助杜梦寅采纳,获得10
11秒前
努力加油煤老八完成签到 ,获得积分10
12秒前
12秒前
cdercder应助张两丰采纳,获得10
13秒前
13秒前
金子悠月完成签到,获得积分10
14秒前
Seotter发布了新的文献求助10
14秒前
每天读顶刊完成签到,获得积分10
15秒前
15秒前
Lh6610完成签到,获得积分0
16秒前
天天小女孩完成签到,获得积分10
16秒前
77完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796285
求助须知:如何正确求助?哪些是违规求助? 3341253
关于积分的说明 10305258
捐赠科研通 3057801
什么是DOI,文献DOI怎么找? 1677917
邀请新用户注册赠送积分活动 805718
科研通“疑难数据库(出版商)”最低求助积分说明 762740