Overview of LiDAR point cloud target detection methods based on deep learning

点云 计算机科学 激光雷达 深度学习 人工智能 云计算 目标检测 点(几何) 测距 自动化 机器学习 遥感 数据挖掘 计算机视觉 模式识别(心理学) 工程类 地理 电信 数学 机械工程 操作系统 几何学
作者
Siyuan Huang,Limin Liu,Xiongjun Fu,Jian Dong,Fuyu Huang,Ping Lang
出处
期刊:Sensor Review [Emerald Publishing Limited]
卷期号:42 (5): 485-502 被引量:3
标识
DOI:10.1108/sr-01-2022-0022
摘要

Purpose The purpose of this paper is to summarize the existing point cloud target detection algorithms based on deep learning, and provide reference for researchers in related fields. In recent years, with its outstanding performance in target detection of 2D images, deep learning technology has been applied in light detection and ranging (LiDAR) point cloud data to improve the automation and intelligence level of target detection. However, there are still some difficulties and room for improvement in target detection from the 3D point cloud. In this paper, the vehicle LiDAR target detection method is chosen as the research subject. Design/methodology/approach Firstly, the challenges of applying deep learning to point cloud target detection are described; secondly, solutions in relevant research are combed in response to the above challenges. The currently popular target detection methods are classified, among which some are compared with illustrate advantages and disadvantages. Moreover, approaches to improve the accuracy of network target detection are introduced. Findings Finally, this paper also summarizes the shortcomings of existing methods and signals the prospective development trend. Originality/value This paper introduces some existing point cloud target detection methods based on deep learning, which can be applied to a driverless, digital map, traffic monitoring and other fields, and provides a reference for researchers in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周雪妍发布了新的文献求助10
2秒前
里里完成签到,获得积分10
3秒前
自由井完成签到,获得积分10
3秒前
青禾发布了新的文献求助10
4秒前
5秒前
邵宏业发布了新的文献求助20
8秒前
9秒前
田様应助善良的导师采纳,获得30
9秒前
呜呜发布了新的文献求助10
11秒前
兴奋小丸子完成签到,获得积分10
11秒前
13秒前
桑尼号完成签到,获得积分10
13秒前
小乐完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
雷颖完成签到,获得积分10
16秒前
现实的又夏完成签到,获得积分10
16秒前
17秒前
Xinyu应助Sofia采纳,获得10
17秒前
从容雨筠完成签到,获得积分10
17秒前
Johnson完成签到 ,获得积分10
18秒前
伶俐如冰发布了新的文献求助10
20秒前
20秒前
20秒前
xixi发布了新的文献求助10
21秒前
科研通AI5应助呜呜采纳,获得10
21秒前
yihoxu发布了新的文献求助10
21秒前
学术小白完成签到,获得积分10
22秒前
23秒前
William_l_c发布了新的文献求助10
23秒前
yang完成签到,获得积分10
23秒前
涵泽完成签到,获得积分10
24秒前
24秒前
Lucas应助吃吃货采纳,获得10
26秒前
27秒前
鲸鱼阿扑完成签到,获得积分10
28秒前
今后应助乐乐采纳,获得30
29秒前
justin完成签到,获得积分10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846453
求助须知:如何正确求助?哪些是违规求助? 3388950
关于积分的说明 10555151
捐赠科研通 3109404
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824853
科研通“疑难数据库(出版商)”最低求助积分说明 775086