亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploration and analysis of On-Surface and In-Air handwriting attributes to improve dysgraphia disorder diagnosis in children based on machine learning methods

书写困难 笔迹 计算机科学 人工智能 支持向量机 阿达布思 随机森林 特征提取 机器学习 分类器(UML) 模式识别(心理学) 自然语言处理 诵读困难 阅读(过程) 政治学 法学
作者
Jayakanth Kunhoth,Somaya Al Maadeed,Moutaz Saleh,Younes Akbari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:83: 104715-104715 被引量:3
标识
DOI:10.1016/j.bspc.2023.104715
摘要

Dysgraphia is a type of learning disorder that affects children’s writing skills. Poor writing skills can obstruct students’ academic growth if it is undiagnosed and untreated properly in the early stages. The irregularity in the symptoms and varying levels of difficulty at each age level made the dysgraphia diagnosis task quite complex. This work focuses on developing machine learning-based automated methods to build the dysgraphia screening tool for children. The proposed work analyzes the various attributes of online handwritten data recorded by digitizing tablets during On-Surface (when the pen is on the tablet’s surface) and In-Air activity (when the pen is away from the tablet’s surface). The proposed work has considered feature extraction from the whole handwriting data in a combined manner instead of feature extraction from task-specific (word, letter, sentence, etc.) handwritten data separately to reduce the number of features. This approach has significantly reduced the number of features by about 85%. Extracted features are used to train and evaluate multiple machine learning classifiers such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random forest, and AdaBoost. Evaluation in a publicly available dataset indicates that the AdaBoost classifier achieved a classification accuracy of 80.8%, which is 1.3% more than the state-of-the-art method. Moreover, a deep analysis of different characteristics (kinematic, dynamic, temporal, spatial, etc.) of online handwriting is conducted to examine their significance in distinguishing normal and abnormal handwritten data. The analysis can help psychologists determine what attributes and methods should be considered for effective treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bookgg完成签到 ,获得积分10
5秒前
Ava应助小梦采纳,获得10
8秒前
16秒前
春和小椰发布了新的文献求助10
22秒前
nnnick完成签到,获得积分0
24秒前
mianmian2025完成签到 ,获得积分10
26秒前
39秒前
夏侯德东发布了新的文献求助10
46秒前
52秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
落落洛栖发布了新的文献求助10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
彩虹儿应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
深情的荧发布了新的文献求助30
1分钟前
多边棱发布了新的文献求助10
1分钟前
科研通AI5应助夏侯德东采纳,获得10
1分钟前
1分钟前
小梦发布了新的文献求助10
1分钟前
1分钟前
夏侯德东发布了新的文献求助10
1分钟前
夏侯德东发布了新的文献求助10
2分钟前
2分钟前
Zzz_Carlos完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
小蘑菇应助双手外科结采纳,获得10
3分钟前
彩虹儿应助科研通管家采纳,获得10
3分钟前
多边棱发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
春和小椰完成签到,获得积分20
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
搜集达人应助多边棱采纳,获得10
4分钟前
4分钟前
悦耳白山发布了新的文献求助10
5分钟前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4640291
求助须知:如何正确求助?哪些是违规求助? 4033150
关于积分的说明 12476585
捐赠科研通 3720755
什么是DOI,文献DOI怎么找? 2053551
邀请新用户注册赠送积分活动 1084685
科研通“疑难数据库(出版商)”最低求助积分说明 966500