Artificial Viscosity in Physics-Informed Neural Networks for Parametric Compressible Flows

人工神经网络 参数统计 压缩性 粘度 统计物理学 物理 计算机科学 机械 数学 人工智能 热力学 统计
作者
Simon Wassing,Stefan Langer,Philipp Bekemeyer
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4353534
摘要

The numerical approximation of solutions to the compressible Euler and Navier-stokes equations is a crucial but challenging task with relevance in various fields of science and engineering. Recently, methods from deep learning have been successfully employed for solving partial differential equations by incorporating the equations into a loss function that is minimized during the training of a neural network. This approach yields a so-called physics-informed neural network. It is not based upon classical discretizations, such as finite-volume or finite-element schemes, and can even address parametric problems in a straightforward manner. This has raised the question, whether physics-informed neural networks may be a viable alternative to conventional methods for computational fluid dynamics. In this article we propose a physics-informed neural network training procedures to approximate steady-state solutions of boundary-value problems for the compressible Euler equations. It turns out that the addition of artificial dissipation during the training process is important to avoid unphysical results. A method for reducing this additional numerical viscosity during the training is presented. Furthermore, we showcase how this approach can be combined with parametric boundary conditions. Our results highlight the appearance of unphysical results when solving compressible flows with physics-informed neural networks and offer a new approach to overcome this problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ethan完成签到,获得积分10
刚刚
清秀的大山完成签到,获得积分10
刚刚
小蘑菇应助优美靖柏采纳,获得10
2秒前
ww发布了新的文献求助10
2秒前
3秒前
小代完成签到,获得积分10
6秒前
Qiuju完成签到,获得积分10
6秒前
zhan完成签到,获得积分10
7秒前
8秒前
夜已深完成签到,获得积分10
8秒前
Zhidong Wei完成签到,获得积分10
9秒前
huangsongsong完成签到,获得积分20
10秒前
优美靖柏完成签到,获得积分10
11秒前
今天你还好吗完成签到,获得积分10
12秒前
14秒前
cocofan完成签到 ,获得积分10
15秒前
chao完成签到,获得积分10
15秒前
CipherSage应助斯文发糕采纳,获得10
16秒前
16秒前
杨一乐完成签到,获得积分10
17秒前
拼搏慕儿完成签到 ,获得积分10
17秒前
democienceek完成签到,获得积分10
19秒前
LouisKing发布了新的文献求助10
19秒前
swjs08完成签到,获得积分10
21秒前
梦里花落声应助耕牛热采纳,获得10
21秒前
24秒前
wushenghao发布了新的文献求助10
24秒前
25秒前
Red-Rain发布了新的文献求助30
27秒前
28秒前
moon完成签到,获得积分10
30秒前
小小菜鸟芬完成签到,获得积分10
30秒前
HI4完成签到,获得积分10
30秒前
30秒前
科研小白完成签到,获得积分10
30秒前
秀秀发布了新的文献求助10
31秒前
啊嘟嘟女士完成签到,获得积分10
31秒前
慕青应助figure采纳,获得10
33秒前
ouyoha完成签到,获得积分10
34秒前
酷酷山柳完成签到 ,获得积分10
36秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898