A deep learning energy-based method for classical elastoplasticity

材料科学 人工智能 计算机科学
作者
Junyan He,Diab W. Abueidda,Rashid K. Abu Al‐Rub,Seid Korić,Iwona Jasiuk
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:162: 103531-103531 被引量:22
标识
DOI:10.1016/j.ijplas.2023.103531
摘要

The deep energy method (DEM) has been used to solve the elastic deformation of structures with linear elasticity, hyperelasticity, and strain-gradient elasticity material models based on the principle of minimum potential energy. In this work, we extend DEM to elastoplasticity problems involving path dependence and irreversibility. A loss function inspired by the discrete variational formulation of plasticity is proposed. The radial return algorithm is coupled with DEM to update the plastic internal state variables without violating the Kuhn–Tucker consistency conditions. Finite element shape functions and their gradients are used to approximate the spatial gradients of the DEM-predicted displacements, and Gauss quadrature is used to integrate the loss function. Four numerical examples are presented to demonstrate the use of the framework, such as generating stress–strain curves in cyclic loading, material heterogeneity, performance comparison with other physics-informed methods, and simulation/inference on unstructured meshes. In all cases, the DEM solution shows decent accuracy compared to the reference solution obtained from the finite element method. The current DEM model marks the first time that energy-based physics-informed neural networks are extended to plasticity, and offers promising potential to effectively solve elastoplasticity problems from scratch using deep neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助yyymmma采纳,获得10
1秒前
11哥完成签到,获得积分10
1秒前
心想事陈完成签到,获得积分10
1秒前
彭于彦祖应助清修采纳,获得20
1秒前
1秒前
2秒前
shuofeng完成签到 ,获得积分10
2秒前
勤恳化蛹完成签到 ,获得积分10
2秒前
朔流而上完成签到,获得积分10
2秒前
大个应助2021采纳,获得10
4秒前
等待冬亦完成签到,获得积分10
4秒前
lvlv完成签到,获得积分10
4秒前
恩雅完成签到,获得积分10
4秒前
5秒前
523完成签到,获得积分10
5秒前
昏睡的蟠桃举报丫丫求助涉嫌违规
5秒前
领导范儿应助linyu采纳,获得10
5秒前
高翎溪发布了新的文献求助10
6秒前
负责纲完成签到,获得积分10
6秒前
6秒前
冰与火完成签到,获得积分10
6秒前
YY完成签到 ,获得积分10
6秒前
7秒前
8秒前
polaris完成签到 ,获得积分10
8秒前
myy完成签到,获得积分10
9秒前
10秒前
10秒前
英俊的铭应助1900采纳,获得10
10秒前
11秒前
11秒前
lijing李静ustc完成签到,获得积分20
12秒前
14秒前
科研通AI5应助冷静水蓝采纳,获得30
14秒前
块块应助VVV采纳,获得10
15秒前
2021发布了新的文献求助10
16秒前
Lebranium完成签到,获得积分10
16秒前
yyymmma发布了新的文献求助10
16秒前
16秒前
若安在完成签到,获得积分10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806