亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Triple-layer joint optimization of capacity and operation for integrated energy systems by coordination on multiple timescales

接头(建筑物) 图层(电子) 能量(信号处理) 能源系统 计算机科学 工程类 材料科学 物理 纳米技术 结构工程 量子力学
作者
Lizhi Zhang,Bo Sun,Fan Li
出处
期刊:Energy [Elsevier BV]
卷期号:302: 131775-131775 被引量:2
标识
DOI:10.1016/j.energy.2024.131775
摘要

The introduction of energy conversion and storage devices, such as power-to-gas (P2G) and seasonal energy storage, can realize the multi-timescale electricity, heat and natural gas complementarity for integrated energy systems (IESs), promoting renewable energy consumption. However, this brings a large number of decision variables, strong coupling, and nonlinearity, increasing the complexity and difficulty of the optimal design for IESs. Therefore, this study proposes a generic triple-layer optimal design framework for IESs via coordination on multiple timescales. The proposed framework decomposes the optimal design of IESs into long-, medium-, and short-timescale optimization layers that are tractable. The long-timescale optimization layer realizes the seasonal source–load matching by incorporating a refined electricity–gas complementarity model; medium-timescale optimization layer utilizes the inter-day energy transfer to deal with extreme loads caused by rare weather conditions; and short-timescale optimization layer aims to realize real-time energy balances and gain economic benefits by intraday peak shaving. Each layer not only optimizes related capacity and operation variables jointly for its own timescale but also exchanges coupling information with adjacent layers via designed interactive iteration mechanisms. The implementation of the proposed framework is further investigated in the design of an electricity–gas–heating–cooling coupled IES. Finally, a case study is performed to verify the feasibility and effectiveness of the proposed optimal design method. Simulation results show that the proposed method realizes source–load matching across multiple timescales, reducing the annualized total cost of the IES by 2.4% and 3.3% compared to the conventional single-timescale optimal design method under the grid connection and off-grid modes, respectively. The renewable energy consumption and device utilization rate of the optimized IES exhibit obvious improvements. In particular, the wind energy consumption of the IES increases by 15 times after introducing P2G and seasonal energy storage. Furthermore, sensitivity analyses indicate that the natural gas price considerably affects the optimization of the capacity configuration and economic performance of the IES, far exceeding that of the electricity price.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
刚刚
沐熙发布了新的文献求助10
41秒前
emchavezangel完成签到,获得积分10
46秒前
SYLH应助emchavezangel采纳,获得10
51秒前
香蕉觅云应助洒脱鲲采纳,获得10
1分钟前
Ocean完成签到,获得积分10
1分钟前
沐熙发布了新的文献求助10
1分钟前
高兴凝安完成签到 ,获得积分10
1分钟前
liuliu0801完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
沐熙完成签到,获得积分10
2分钟前
2分钟前
沐熙发布了新的文献求助10
2分钟前
2分钟前
北风完成签到,获得积分10
2分钟前
水的很厉害完成签到,获得积分10
2分钟前
月儿完成签到 ,获得积分10
2分钟前
阔达的非笑完成签到 ,获得积分10
2分钟前
小马甲应助Silence采纳,获得10
2分钟前
2分钟前
ddeqbbw完成签到,获得积分10
2分钟前
Silence发布了新的文献求助10
2分钟前
沐熙发布了新的文献求助10
3分钟前
3分钟前
在水一方应助狮子采纳,获得10
3分钟前
小马甲应助谦让的西装采纳,获得10
4分钟前
4分钟前
4分钟前
狮子发布了新的文献求助10
4分钟前
猜不猜不完成签到 ,获得积分10
5分钟前
狮子发布了新的文献求助10
5分钟前
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
孙燕应助ASZXDW采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
陶醉的夏槐应助cctv18采纳,获得10
7分钟前
cctv18给川川子的求助进行了留言
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833819
求助须知:如何正确求助?哪些是违规求助? 3376278
关于积分的说明 10492541
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842