清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hierarchical Q-Learning Path Planning for Cooperative Tracking Control of Multi-Agent Systems With Lumped Uncertainties

运动规划 控制(管理) 路径(计算) 跟踪(教育) 计算机科学 多智能体系统 控制工程 控制系统 控制理论(社会学) 工程类 分布式计算 机器人 人工智能 计算机网络 电气工程 教育学 心理学
作者
Mai-Kao Lu,Ming‐Feng Ge,Zhi‐Wei Liu,Teng‐Fei Ding
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tase.2024.3401456
摘要

This paper presents the hierarchical Q-learning path planning (HQPP) architecture for solving the cooperative tracking control problem of multi-agent systems (MASs) with lumped uncertainties in an unknown environment. The presented architecture consists of three layers, namely, the decision layer, the distributed estimated layer, and the local control layer. Specifically, in the decision layer, we propose the dynamic parameter and trajectory fitting Q-learning (DPTF-Q-learning) algorithm to find a feasible continuous trajectory to the target in an unknown environment. In addition, two dynamic parameters are proposed and introduced into the DPTF-Q-learning algorithm to shorten the required minimum number of steps in the training process. Then, the distributed estimated layer is designed to broadcast the continuous trajectory generated from the decision layer based on the directed communication topology containing a spanning tree. In the local control layer, the cooperative tracking control (CTC) algorithm is proposed to achieve cooperative tracking for MASs in the presence of uncertain dynamics and external disturbances. The sufficient conditions for achieving cooperative tracking control are rigorously derived by employing Lyapunov argument. Finally, numerical simulations are presented to verify the effectiveness of the proposed architecture. Note to Practitioners —This paper is motivated by the need of developing an integrated path planning and control method for cooperative tracking of multi-agent systems in a no-signal environment and without the presence of users. Most related works are limited to separate fields: 1) most existing path planning techniques are only applicable to a single agent and discrete environments, and 2) most existing cooperative tracking algorithms focus on guaranteeing control stability and error convergence without decision-making capabilities. To address the above issues, this work proposes a hierarchical control architecture based on reinforcement learning for multi-agent systems to achieve path planning and cooperative tracking tasks. In addition, multi-agent systems exhibit strong robustness and fault tolerance due to their inherent characteristics, so the above mentioned research can be well applied to post-disaster rescue, intelligent logistics, future war, and so on. Numerical simulations based on Matlab and Python verify the effectiveness of the proposed architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haralee完成签到 ,获得积分10
2秒前
微卫星不稳定完成签到 ,获得积分10
18秒前
23秒前
36秒前
41秒前
马婷婷完成签到,获得积分10
55秒前
谭凯文完成签到 ,获得积分10
1分钟前
1分钟前
doctorbin完成签到 ,获得积分10
1分钟前
1分钟前
ding应助文天采纳,获得10
1分钟前
Singularity完成签到,获得积分0
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
vivi完成签到,获得积分10
2分钟前
2分钟前
ziyewutong完成签到,获得积分10
2分钟前
Cheney完成签到 ,获得积分10
2分钟前
2分钟前
元神完成签到 ,获得积分10
2分钟前
沐雨篱边完成签到 ,获得积分10
3分钟前
TUTU完成签到,获得积分10
3分钟前
3分钟前
俊逸吐司完成签到 ,获得积分10
3分钟前
huiluowork完成签到 ,获得积分10
3分钟前
5433完成签到 ,获得积分10
3分钟前
Kim_完成签到,获得积分10
3分钟前
3分钟前
毛毛弟完成签到 ,获得积分10
4分钟前
chcmy完成签到 ,获得积分0
4分钟前
肖果完成签到 ,获得积分10
4分钟前
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
Dong完成签到 ,获得积分10
4分钟前
wjx完成签到 ,获得积分10
5分钟前
噼里啪啦完成签到,获得积分10
5分钟前
digger2023完成签到 ,获得积分10
5分钟前
zzgpku完成签到,获得积分0
5分钟前
四叶草完成签到 ,获得积分10
5分钟前
5分钟前
003完成签到,获得积分10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626