Pre-trained Artificial Intelligence Models in the Prediction and Classification of Atherosclerotic Cardiovascular Disease

作者
Furkan Şakiroğlu,Cemil Çolak,Mehmet Cengiz Çolak
出处
期刊:The Eurasian Journal of Medicine [AVES Publishing Co.]
卷期号:57 (3): 1-8
标识
DOI:10.5152/eurasianjmed.2025.25937
摘要

Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of global morbidity and mortality. The current study provides a systematic review of the use of artificial intelligence (AI) technologies applied to the prediction and management of ASCVD. Traditional risk assessment approaches have their restrictions, leading to a growing preference for AI and machine learning techniques in risk assessment. First, this study tackles the complex pathophysiology of ASCVD and the problems associated with the current diagnosis, followed by an in-depth analysis of the wide variety of AI models that can be applied to electronic health records, medical imaging data, and other biomarkers. Special attention will be paid toward the potential of natural language processing models like bidirectional encoder representations from transformers in predicting risk from textual clinical data, and the overwhelming success of convolutional neural networks such as residual neural network and visual geometry group in plaque-based analysis through imaging modalities. Although the research results show that these models have a lot to offer in the clinical world, the authors also describe some serious disadvantages: data bias, interpretability of the model, and computational needs. It highlights, in particular, the need for multicenter validation studies as well as developing explainable AI techniques. Overall, AI-based approaches may pave the way for a new paradigm in ASCVD management. Nevertheless, deploying these technologies in everyday clinical practice will require overcoming technical, ethical, and regulatory challenges. As such, interdisciplinary collaboration and thorough clinical validation studies are essential for fulfilling the promise of these novel strategies to enhance patient outcomes.Cite this article as: Şakiroğlu F, Çolak C, Çolak MC. Pre-trained artificial intelligence models in the prediction and classification of atherosclerotic cardiovascular disease. Eurasian J Med. 2025, 57(3), 0937, doi:10.5152/eurasianjmed.2025.25937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xue发布了新的文献求助10
1秒前
1秒前
Lcc222完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助郭灰灰采纳,获得10
1秒前
1秒前
2秒前
小杜完成签到 ,获得积分10
3秒前
叶子完成签到,获得积分10
4秒前
小二郎应助小漆采纳,获得10
4秒前
伍声痕完成签到,获得积分10
4秒前
英勇海发布了新的文献求助10
4秒前
罗永超完成签到,获得积分10
5秒前
5秒前
suchen完成签到,获得积分10
5秒前
Hello应助复杂的小鸭子采纳,获得10
5秒前
5秒前
流氓煎蛋完成签到,获得积分10
5秒前
6秒前
舒苏应助科研小趴菜采纳,获得10
6秒前
6秒前
乐乐应助yueang采纳,获得10
7秒前
zzioo发布了新的文献求助10
7秒前
zlqk完成签到,获得积分20
7秒前
强强强强完成签到,获得积分10
7秒前
8秒前
89发布了新的文献求助10
8秒前
8秒前
一条裸游的鱼完成签到,获得积分10
8秒前
王华瑞发布了新的文献求助10
8秒前
无花果应助xue采纳,获得10
9秒前
万能图书馆应助英和路雪采纳,获得10
9秒前
devoe完成签到,获得积分10
9秒前
haonanchen完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
顾矜应助鲁丁丁采纳,获得10
10秒前
冷语发布了新的文献求助10
10秒前
贪玩发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619076
求助须知:如何正确求助?哪些是违规求助? 4703940
关于积分的说明 14924739
捐赠科研通 4759151
什么是DOI,文献DOI怎么找? 2550347
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401