Classification of Mental Disorders based on the Fusion of Millimeter-wave Radar and Photoplethysmography Signals

作者
Sheng Wang,Leilei Zheng,Wenyu Zhang,Zhaoxi Chen,Zetao Wang,Zheng Lin,Gang Li
标识
DOI:10.1109/embc58623.2025.11253770
摘要

Mental disorders, such as anxiety and depression, affect approximately 900 million people worldwide, posing severe challenges to healthcare systems and society. Accurate classification of mental disorders is crucial for effective treatment. However, current diagnostic methods primarily rely on behavioral observation and self-reported questionnaires, which are highly influenced by patient subjectivity and physician expertise. Sleep provides a stable physiological state largely unaffected by subjective emotions. Sleep-related vital signs, such as respiration and heart rate, offer valuable insights into mental health conditions. Therefore, in this study, we propose a novel method for mental disorder classification by monitoring physiological signals during sleep. We utilize a millimeter-wave radar to monitor respiratory and body movement patterns, along with a pulse oximeter to acquire photoplethysmography (PPG) signals. Statistical features extracted based on medical prior knowledge are then input into a deep neural network together with raw physiological signals for mental disorder classification. Experimental results on a real-world dataset of 447 participants validate the effectiveness of our proposed method. This study provides a portable and objective solution for mental disorder classification, contributing to improved diagnostic accuracy and facilitating broader access to mental healthcare resources.Clinical Relevance- This study provides an objective and portable method for classifying mental disorders, which is of significant importance for improving diagnostic accuracy and promoting the decentralization of healthcare resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Ted采纳,获得10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
孤独半兰完成签到 ,获得积分10
2秒前
李爱国应助夹心采纳,获得10
2秒前
2秒前
ding应助迅速三问采纳,获得10
3秒前
研友_VZG7GZ应助多情新蕾采纳,获得10
3秒前
中国大陆完成签到,获得积分10
3秒前
小火车完成签到,获得积分10
5秒前
5秒前
5秒前
电致阿光完成签到,获得积分10
5秒前
拉拉发布了新的文献求助10
6秒前
7秒前
熊风完成签到,获得积分10
7秒前
顺利毕业完成签到,获得积分10
8秒前
Bismarck发布了新的文献求助10
8秒前
8秒前
8秒前
好的老师发布了新的文献求助10
8秒前
8秒前
完美世界应助熊熊阁采纳,获得10
8秒前
LI完成签到,获得积分10
9秒前
nownow完成签到,获得积分10
9秒前
不睡觉的看完成签到,获得积分10
9秒前
科研通AI6.1应助张f采纳,获得10
9秒前
hooke完成签到,获得积分10
10秒前
阿源发布了新的文献求助10
10秒前
Pa1mary完成签到 ,获得积分10
11秒前
wanci应助sdzylx7采纳,获得10
11秒前
饱满的纹发布了新的文献求助10
11秒前
11秒前
建和完成签到,获得积分20
11秒前
翟如风完成签到,获得积分10
12秒前
TKTK完成签到,获得积分20
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750082
求助须知:如何正确求助?哪些是违规求助? 5462045
关于积分的说明 15365483
捐赠科研通 4889284
什么是DOI,文献DOI怎么找? 2629034
邀请新用户注册赠送积分活动 1577326
关于科研通互助平台的介绍 1533933