亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning‐Enhanced Clinical Decision Support for Diagnosing Sinusitis With Nasal Endoscopy

作者
Dipesh Gyawali,Thomas Mundy,Majid Hosseini,Morteza Bodaghi,Akio Fujiwara,S.K. Bhatia,Karen Baker,Elena Bartolone,Dhara Patel,Henry Chu,Raju Gottumukkala,Jonathan Bidwell,Edward D. McCoul
出处
期刊:International Forum of Allergy & Rhinology [Wiley]
标识
DOI:10.1002/alr.70045
摘要

ABSTRACT Background Sinusitis is a prevalent disease for which nasal endoscopy (NE) is an optimal diagnostic modality. However, NE accuracy is limited by inter‐operator variability in landmark identification and localization of mucus that is necessary for sinusitis diagnosis. We sought to develop a novel multi‐class machine learning (ML) framework that detects anatomical landmarks and structures for sinusitis assessment as supported by clinical best practices. Methods A total of 3513 NE images from 452 patients were manually annotated by four physicians for three classes: middle turbinate (MT), inferior turbinate (IT), and mucus. A YOLOv11‐nano model was trained for multi‐class detection and segmentation. We developed a rule‐based logic for middle meatus localization, implementing a clinical algorithm that applies anatomy Intersection over Union (IoU) and conditional logic for sinusitis diagnosis. The system was validated on 178 images from 50 patients with chronic rhinosinusitis without polyps (CRSsNP) with benchmarking of real‐time performance. Results The multi‐class detection and segmentation model achieved > 75% F1 score for detecting turbinates with mucus. The clinical algorithm achieved 75.0% sensitivity, 76.0% specificity, and 75.2% accuracy for sinusitis classification, with a F1 score of 81.8%, approaching the accuracy of a trained otolaryngologist. The framework achieved near real‐time performance at > 20fps on GPU device, demonstrating suitability for integration into live clinical workflows. Conclusion This novel ML‐driven diagnostic framework with a rule‐based clinical algorithm enhances decision‐making for diagnosing sinusitis with NE. By reducing inter‐operator variability, achieving performance comparable to otolaryngologists, and enabling real‐time processing for non‐specialists, this work holds potential for standardizing care and improving patient outcomes. Future research will focus on expanding to different sinusitis phenotypes and prospective real‐time implementation in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王吉萍完成签到 ,获得积分10
刚刚
1秒前
5秒前
ffff完成签到 ,获得积分10
8秒前
13秒前
17秒前
CipherSage应助细草微风岸采纳,获得10
17秒前
JEK发布了新的文献求助10
18秒前
23秒前
29秒前
852应助甜蜜乐松采纳,获得10
30秒前
32秒前
32秒前
33秒前
桃核发布了新的文献求助20
39秒前
44秒前
1分钟前
FashionBoy应助桃核采纳,获得10
1分钟前
仲夏夜之梦完成签到,获得积分10
1分钟前
华仔应助大林采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
甜蜜乐松发布了新的文献求助10
1分钟前
大模型应助羞涩的菲鹰采纳,获得10
1分钟前
范yx完成签到 ,获得积分10
1分钟前
YJY完成签到 ,获得积分10
1分钟前
大林发布了新的文献求助10
1分钟前
1分钟前
来栖暁发布了新的文献求助10
1分钟前
flyingpig发布了新的文献求助10
1分钟前
陶醉的蜜蜂完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
牧沛凝完成签到 ,获得积分10
1分钟前
1分钟前
观澜发布了新的文献求助20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606552
求助须知:如何正确求助?哪些是违规求助? 4690976
关于积分的说明 14866654
捐赠科研通 4706811
什么是DOI,文献DOI怎么找? 2542800
邀请新用户注册赠送积分活动 1508189
关于科研通互助平台的介绍 1472276