LGFFM: A Localized and Globalized Frequency Fusion Model for Ultrasound Image Segmentation

图像融合 计算机视觉 图像分割 人工智能 融合 图像(数学) 分割 计算机科学 高频超声 超声波 放射科 医学 语言学 哲学
作者
Xiling Luo,Yi Wang,Le Ou-Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-1 被引量:1
标识
DOI:10.1109/tmi.2025.3600327
摘要

Accurate segmentation of ultrasound images plays a critical role in disease screening and diagnosis. Recently, neural network-based methods have garnered significant attention for their potential in improving ultrasound image segmentation. However, these methods still face significant challenges, primarily due to inherent issues in ultrasound images, such as low resolution, speckle noise, and artifacts. Additionally, ultrasound image segmentation encompasses a wide range of scenarios, including organ segmentation (e.g., cardiac and fetal head) and lesion segmentation (e.g., breast cancer and thyroid nodules), making the task highly diverse and complex. Existing methods are often designed for specific segmentation scenarios, which limits their flexibility and ability to meet the diverse needs across various scenarios. To address these challenges, we propose a novel Localized and Globalized Frequency Fusion Model (LGFFM) for ultrasound image segmentation. Specifically, we first design a Parallel Bi-Encoder (PBE) architecture that integrates Local Feature Blocks (LFB) and Global Feature Blocks (GLB) to enhance feature extraction. Additionally, we introduce a Frequency Domain Mapping Module (FDMM) to capture texture information, particularly high-frequency details such as edges. Finally, a Multi-Domain Fusion (MDF) method is developed to effectively integrate features across different domains. We conduct extensive experiments on eight representative public ultrasound datasets across four different types. The results demonstrate that LGFFM outperforms current state-of-the-art methods in both segmentation accuracy and generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷咖啡离开了杯垫完成签到,获得积分10
刚刚
图图早点睡完成签到 ,获得积分10
1秒前
Criminology34举报量子星尘求助涉嫌违规
1秒前
1秒前
严冥幽发布了新的文献求助10
1秒前
大模型应助okkk采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
yznfly应助燕柯龙之介采纳,获得20
4秒前
4秒前
5秒前
xx发布了新的文献求助10
5秒前
细心若南完成签到,获得积分10
5秒前
johirol发布了新的文献求助10
6秒前
6秒前
XLT完成签到,获得积分10
6秒前
6秒前
细心若南发布了新的文献求助10
9秒前
9秒前
luo发布了新的文献求助10
10秒前
远志发布了新的文献求助10
11秒前
花影发布了新的文献求助10
13秒前
Dguojiang发布了新的文献求助10
13秒前
15秒前
大个应助蘇尼Ai采纳,获得10
15秒前
15秒前
16秒前
xx完成签到,获得积分20
17秒前
Hello应助errui采纳,获得10
18秒前
18秒前
19秒前
阿桔完成签到 ,获得积分10
19秒前
yx发布了新的文献求助20
20秒前
20秒前
生活发布了新的文献求助10
20秒前
小米汤发布了新的文献求助10
20秒前
Lucas应助caisongliang采纳,获得10
21秒前
JIANYOUFU完成签到,获得积分10
22秒前
一灯大师发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722441
求助须知:如何正确求助?哪些是违规求助? 5270716
关于积分的说明 15296813
捐赠科研通 4871416
什么是DOI,文献DOI怎么找? 2615987
邀请新用户注册赠送积分活动 1565831
关于科研通互助平台的介绍 1522683