MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction

计算机科学 疾病 生物网络 荟萃分析 图形 精确性和召回率 小RNA 联想(心理学) 交叉验证 人工智能 计算生物学 机器学习 医学 生物 理论计算机科学 基因 遗传学 认识论 内科学 哲学 病理
作者
Shudong Wang,Fuyu Wang,Sibo Qiao,Zhuang Yu,Kuijie Zhang,Shanchen Pang,Robert Nowak,Zhihan Lv
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4639-4648 被引量:11
标识
DOI:10.1109/jbhi.2022.3186534
摘要

MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGANMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGANMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNA-disease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGANMDA in predicting unknown diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
念安发布了新的文献求助10
1秒前
xixi发布了新的文献求助10
2秒前
3秒前
小明应助坚定的觅山采纳,获得10
3秒前
kcmat发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
虚幻德地完成签到,获得积分20
5秒前
所所应助qhy采纳,获得10
5秒前
搜集达人应助感动的莞采纳,获得10
5秒前
5秒前
5秒前
111发布了新的文献求助10
5秒前
6秒前
SciGPT应助Lip采纳,获得10
7秒前
含糊的洙完成签到 ,获得积分10
8秒前
John发布了新的文献求助10
8秒前
才下眉头发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
一只小BSS完成签到,获得积分20
11秒前
科研通AI5应助瘦瘦妖妖采纳,获得30
12秒前
12秒前
13秒前
坚定的觅山完成签到,获得积分10
13秒前
255完成签到,获得积分10
14秒前
14秒前
15秒前
Anna发布了新的文献求助10
16秒前
小二郎应助优雅的紫寒采纳,获得10
16秒前
ainan发布了新的文献求助10
16秒前
大模型应助完美的书雁采纳,获得10
17秒前
17秒前
刻苦的鞋垫完成签到,获得积分10
17秒前
狸子发布了新的文献求助10
17秒前
缓慢的开山完成签到 ,获得积分10
17秒前
才下眉头完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663495
求助须知:如何正确求助?哪些是违规求助? 4045304
关于积分的说明 12513037
捐赠科研通 3737731
什么是DOI,文献DOI怎么找? 2064069
邀请新用户注册赠送积分活动 1093700
科研通“疑难数据库(出版商)”最低求助积分说明 974309