Predictive Maintenance using Machine Learning

停工期 预测性维护 可靠性工程 设备总体有效性 计划维护 主动维护 计算机科学 组分(热力学) 维护措施 纠正性维护 状态维修 制造业 运行维护 风险分析(工程) 预防性维护 工程类 计算机化维修管理系统 生产(经济) 业务 物理 营销 经济 宏观经济学 热力学
作者
Archit P. Kane,Ashutosh S. Kore,Advait N. Khandale,Sarish S. Nigade,Pranjali P. Joshi
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2205.09402
摘要

Predictive maintenance (PdM) is a concept, which is implemented to effectively manage maintenance plans of the assets by predicting their failures with data driven techniques. In these scenarios, data is collected over a certain period of time to monitor the state of equipment. The objective is to find some correlations and patterns that can help predict and ultimately prevent failures. Equipment in manufacturing industry are often utilized without a planned maintenance approach. Such practise frequently results in unexpected downtime, owing to certain unexpected failures. In scheduled maintenance, the condition of the manufacturing equipment is checked after fixed time interval and if any fault occurs, the component is replaced to avoid unexpected equipment stoppages. On the flip side, this leads to increase in time for which machine is non-functioning and cost of carrying out the maintenance. The emergence of Industry 4.0 and smart systems have led to increasing emphasis on predictive maintenance (PdM) strategies that can reduce the cost of downtime and increase the availability (utilization rate) of manufacturing equipment. PdM also has the potential to bring about new sustainable practices in manufacturing by fully utilizing the useful lives of components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶嘿发布了新的文献求助10
2秒前
2秒前
2秒前
科目三应助神勇的砖头采纳,获得10
2秒前
Ustinian发布了新的文献求助10
2秒前
3秒前
3秒前
kitty完成签到 ,获得积分10
4秒前
7秒前
7秒前
Akim应助seven采纳,获得10
7秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
一一应助科研通管家采纳,获得10
8秒前
8秒前
一一应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
五條小羊发布了新的文献求助10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
哈哈哈嗝发布了新的文献求助10
10秒前
内向的元正完成签到,获得积分20
10秒前
10秒前
诚心一一完成签到 ,获得积分10
11秒前
我是老大应助lc采纳,获得10
12秒前
13秒前
兔农糖发布了新的文献求助10
14秒前
慕青应助Sweger采纳,获得10
15秒前
CodeCraft应助fh采纳,获得10
16秒前
Ava应助精英刺客采纳,获得10
18秒前
xdy1990发布了新的文献求助10
18秒前
李治海完成签到,获得积分10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836326
求助须知:如何正确求助?哪些是违规求助? 3378639
关于积分的说明 10505544
捐赠科研通 3098283
什么是DOI,文献DOI怎么找? 1706415
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772417