化感作用
平衡点
霍普夫分叉
控制理论(社会学)
理论(学习稳定性)
数学
竞赛(生物学)
人口
分叉
指数稳定性
生物系统
工作(物理)
价值(数学)
分岔理论
抑制性突触后电位
点(几何)
MATLAB语言
应用数学
计算机科学
植物
数学分析
生物
生态学
统计
物理
热力学
发芽
非线性系统
人工智能
控制(管理)
微分方程
神经科学
几何学
操作系统
量子力学
机器学习
社会学
人口学
出处
期刊:Nucleation and Atmospheric Aerosols
日期:2022-01-01
卷期号:2435: 020044-020044
被引量:7
摘要
The analysis of mutual competition of the growth of plant with particular emphasis on time reliant variations in their densities has been done in our present work. We are proposing a mathematical model of plant population growth with competitive and allelopathic impacts that are stimulating as well as inhibitory on each other. Equilibrium points are calculated and stability analysis is performed about non-zero equilibrium point. Delay parameter destabilizes the system when allelopathic effect is supposed to be of stimulatory in nature. The system shows asymptotic stability when delay parameter having value below the critical point. Hopf bifurcation is observed when the value of delay parameter crosses the critical point. The numerical results are substantiated using MATLAB.
科研通智能强力驱动
Strongly Powered by AbleSci AI