UAV-assisted cooperative offloading energy efficiency system for mobile edge computing

计算机科学 移动边缘计算 能源消耗 边缘计算 分布式计算 水准点(测量) 计算卸载 高效能源利用 GSM演进的增强数据速率 用户设备 任务(项目管理) 实时计算 计算机网络 基站 生态学 电信 管理 大地测量学 工程类 电气工程 经济 生物 地理
作者
Xueyong Yu,Wen-Jin Niu,Ye Zhu,Hongbo Zhu
出处
期刊:Digital Communications and Networks [KeAi]
卷期号:10 (1): 16-24 被引量:12
标识
DOI:10.1016/j.dcan.2022.03.005
摘要

Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure. Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing (MEC) to the Internet of Things (IoT). However, problems such as multi-user and huge data flow in large areas, which contradict the reality that a single UAV is constrained by limited computing power, still exist. Due to allowing UAV collaboration to accomplish complex tasks, cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing, which reduces the computing power consumption and endurance pressure of terminals. Considering the computing requirements of the user terminal, delay constraint of a computing task, energy constraint, and safe distance of UAV, we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption. However, the resulting optimization problem is originally nonconvex and thus, difficult to solve optimally. To tackle this problem, we developed an energy efficiency optimization algorithm using Block Coordinate Descent (BCD) that decomposes the problem into three convex subproblems. Furthermore, we jointly optimized the number of local computing tasks, number of computing offloaded tasks, trajectories of UAV, and offloading matching relationship between multi-UAVs and multiuser terminals. Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyk完成签到,获得积分10
3秒前
3秒前
6秒前
6秒前
完美世界应助标致冰海采纳,获得10
8秒前
小桔青山发布了新的文献求助10
8秒前
海耀完成签到,获得积分10
9秒前
11秒前
无花果应助2021采纳,获得10
12秒前
12秒前
12秒前
znn123发布了新的文献求助10
13秒前
chuer完成签到,获得积分20
13秒前
糟糕的铁锤完成签到,获得积分0
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
Mae发布了新的文献求助30
15秒前
JamesPei应助执着绿草采纳,获得10
16秒前
16秒前
今后应助gxishaw采纳,获得10
16秒前
1Yer6完成签到 ,获得积分10
16秒前
JoJo完成签到,获得积分10
17秒前
吴晨曦发布了新的文献求助10
17秒前
20秒前
ShuV发布了新的文献求助10
21秒前
mm完成签到 ,获得积分10
22秒前
chuer发布了新的文献求助30
22秒前
饼饼完成签到,获得积分10
24秒前
Daralene完成签到,获得积分10
25秒前
25秒前
26秒前
子华完成签到,获得积分10
26秒前
合适的冷松完成签到 ,获得积分10
27秒前
turbodream完成签到,获得积分20
27秒前
健忘数据线完成签到 ,获得积分10
27秒前
29秒前
标致冰海发布了新的文献求助10
32秒前
王欣瑶发布了新的文献求助10
33秒前
mao应助于安容采纳,获得50
33秒前
李健的小迷弟应助qq采纳,获得10
34秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883156
求助须知:如何正确求助?哪些是违规求助? 3425601
关于积分的说明 10744798
捐赠科研通 3150597
什么是DOI,文献DOI怎么找? 1738671
邀请新用户注册赠送积分活动 839471
科研通“疑难数据库(出版商)”最低求助积分说明 784558