Artificial intelligence to evaluate postoperative pain based on facial expression recognition

面部表情 面部表情识别 医学 表达式(计算机科学) 物理医学与康复 人工智能 模式识别(心理学) 面部识别系统 计算机科学 心理学 程序设计语言
作者
Denys Fontaine,Valentin Vielzeuf,Philippe Genestier,Pascal Limeux,Serena Santucci‐Sivilotto,Emmanuel Mory,Nicole Darmon,Michel Lantéri‐Minet,May Mokhtar,Melanie Laine,Damien Vistoli
出处
期刊:European Journal of Pain [Wiley]
卷期号:26 (6): 1282-1291 被引量:57
标识
DOI:10.1002/ejp.1948
摘要

Pain intensity evaluation by self-report is difficult and biased in non-communicating people, which may contribute to inappropriate pain management. The use of artificial intelligence (AI) to evaluate pain intensity based on automated facial expression analysis has not been evaluated in clinical conditions.We trained and externally validated a deep-learning system (ResNet-18 convolutional neural network) to identify and classify 2810 facial expressions of 1189 patients, captured before and after surgery, according to their self-reported pain intensity using numeric rating scale (NRS, 0-10). AI performances were evaluated by accuracy (concordance between AI prediction and patient-reported pain intensity), sensitivity and specificity to diagnose pain ≥4/10 and ≥7/10. We then confronted AI performances with those of 33 nurses to evaluate pain intensity from facial expression in the same situation.In the external testing set (120 face images), the deep learning system was able to predict exactly the pain intensity among the 11 possible scores (0-10) in 53% of the cases with a mean error of 2.4 points. Its sensitivities to detect pain ≥4/10 and ≥7/10 were 89.7% and 77.5%, respectively. Nurses estimated the right NRS pain intensity with a mean accuracy of 14.9% and identified pain ≥4/10 and ≥7/10 with sensitivities of 44.9% and 17.0%.Subject to further improvement of AI performances through further training, these results suggest that AI using facial expression analysis could be used to assist physicians to evaluate pain and detect severe pain, especially in people not able to report appropriately their pain by themselves.These original findings represent a major step in the development of a fully automated, rapid, standardized and objective method based on facial expression analysis to measure pain and detect severe pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白桃乌龙完成签到,获得积分10
2秒前
没头脑和不高兴完成签到,获得积分10
3秒前
哈哈发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助50
4秒前
虚幻龙猫完成签到,获得积分10
6秒前
xyzlancet完成签到,获得积分10
7秒前
安详的海风完成签到,获得积分10
8秒前
苦咖啡行僧完成签到 ,获得积分10
8秒前
LIKUN完成签到,获得积分10
9秒前
唐亚萍完成签到 ,获得积分10
9秒前
11秒前
cdd完成签到,获得积分10
15秒前
Microbiota完成签到,获得积分10
16秒前
胡杨树2006完成签到,获得积分10
16秒前
甜甜友容完成签到,获得积分10
16秒前
张靖完成签到 ,获得积分10
19秒前
leeheeseung发布了新的文献求助20
20秒前
易槐完成签到 ,获得积分10
20秒前
Nereus完成签到 ,获得积分10
23秒前
可耐的问柳完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助150
25秒前
彳亍宣完成签到 ,获得积分10
26秒前
meng完成签到,获得积分10
27秒前
儒雅的如松完成签到 ,获得积分10
28秒前
ok123完成签到 ,获得积分10
29秒前
30秒前
从前慢完成签到 ,获得积分10
31秒前
小白天钓鱼完成签到 ,获得积分10
32秒前
persi完成签到 ,获得积分10
33秒前
科研通AI6应助科研通管家采纳,获得150
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
量子星尘发布了新的文献求助10
45秒前
共享精神应助xingsixs采纳,获得10
47秒前
沁雪完成签到 ,获得积分10
48秒前
nav完成签到 ,获得积分10
50秒前
羽冰酒完成签到 ,获得积分10
50秒前
carl完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813