Establishing a Prognostic Model Based on Three Genomic Instability-related LncRNAs for Clear Cell Renal Cell Cancer

比例危险模型 基因组不稳定性 医学 转录组 肿瘤科 癌症 体细胞 生存分析 内科学 单变量 生物信息学 基因 生物 遗传学 基因表达 多元统计 DNA DNA损伤 统计 数学
作者
Lulu Shen,Hou Hua-ling,Shan Zhang,Chen Dianxi,Yiqing Li,Qin Li
出处
期刊:Clinical Genitourinary Cancer [Elsevier BV]
卷期号:20 (4): e317-e329 被引量:2
标识
DOI:10.1016/j.clgc.2022.02.005
摘要

Among all types of renal cell cancer (RCC), clear cell renal cell cancer (ccRCC) is the most common and aggressive one. Emerging evidence uncovers that long non-coding RNAs (lncRNAs) are involved in genomic instability, which correlates to the clinical outcomes of patients who suffer from various kinds of cancers.We gathered expression profiles of transcriptome RNA and clinical information about ccRCC from The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) database. The lncRNA expression profiles and somatic mutation data were combined to identify genome instability-related lncRNAs (GILncRs) by significance analysis of T test. By means of univariate and multivariate cox regression analyses, 3 GILncRs strongly associated with patient prognosis were screened out to build a genomic instability-related risk score (GIRS) model. We use R-version 4.0.4 to draw Kaplan-Meier plots and ROC curves for survival prediction.The somatic mutation count was higher in genomic unstable group. PBRM1 showed lower expression in genomic unstable group. Three lncRNAs such as LINC00460, AC156455.1, LINC01606 were included in the GIRS model. Patients had poorer prognosis with higher risk score of GIRS model. The somatic mutation count was higher in patients with higher risk score while PBRM1 expression was lower. The GIRS model was independent from other clinical factors. The GIRS model was superior to other 2 published lncRNA signatures in survival prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
暖阳发布了新的文献求助20
2秒前
郭郭郭完成签到,获得积分10
2秒前
yaozi发布了新的文献求助10
3秒前
3秒前
乔乔兔发布了新的文献求助10
4秒前
4秒前
子铭发布了新的文献求助10
5秒前
bvcxz完成签到 ,获得积分20
5秒前
时尚颖发布了新的文献求助10
6秒前
SWEET发布了新的文献求助10
6秒前
7秒前
柔弱蹇完成签到 ,获得积分10
7秒前
8秒前
beak完成签到,获得积分20
8秒前
叶叶叶叶叶完成签到,获得积分10
8秒前
yaozi完成签到,获得积分10
9秒前
冰魂应助林夕采纳,获得20
9秒前
xyl完成签到,获得积分10
10秒前
用户123完成签到,获得积分10
10秒前
shiyi完成签到,获得积分10
11秒前
柠檬西米露完成签到,获得积分10
12秒前
SWEET完成签到,获得积分10
13秒前
乔乔兔完成签到,获得积分10
13秒前
陈一一完成签到 ,获得积分10
14秒前
昭玥完成签到,获得积分10
14秒前
领导范儿应助Stardust采纳,获得10
14秒前
婷婷完成签到,获得积分20
14秒前
zhangjh发布了新的文献求助10
15秒前
时冬冬应助LaTeXer采纳,获得20
15秒前
15秒前
初次完成签到 ,获得积分10
16秒前
16秒前
17秒前
yangtao199发布了新的文献求助150
18秒前
矮小的聪展完成签到,获得积分10
19秒前
小罗飞飞飞完成签到 ,获得积分10
19秒前
CodeCraft应助花生酱采纳,获得10
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304