Profiling of Circulating Tumor DNA for Noninvasive Disease Detection, Risk Stratification, and MRD Monitoring in Patients with CNS Lymphoma

医学 肿瘤科 基因分型 淋巴瘤 原发性中枢神经系统淋巴瘤 内科学 疾病 循环肿瘤DNA 循环肿瘤细胞 个性化医疗 癌症 生物信息学 转移 基因型 基因 生物 生物化学
作者
Jurik Mutter,Stefan Alig,Eliza Lauer,Mohammad Hossein Nasr-Esfahani,Jan Mitschke,David M. Kurtz,Julia Kühn,Sabine Bleul,Mari Broman Olsen,Chih Long Liu,Michael C. Jin,Charles Macaulay,Nicolas Neidert,Timo Volk,Sebastian Rauer,Dieter Henrik Heiland,Jürgen Finke,Justus Duyster,Julius Wehrle,Marco Prinz,Gerald Illerhaus,Peter C. Reinacher,Elisabeth Schorb,Maximilian Diehn,Ash A. Alizadeh,Florian Scherer
出处
期刊:Blood [Elsevier BV]
卷期号:138 (Supplement 1): 6-6 被引量:14
标识
DOI:10.1182/blood-2021-149644
摘要

Abstract Introduction: Clinical outcomes for patients with central nervous system lymphoma (CNSL) are remarkably heterogeneous, yet identification of patients at high risk for treatment failure remains challenging with existing methods. In addition, diagnosis of CNSL requires invasive neurosurgical biopsies that carry procedural risks and often cannot be performed in frail or elderly patients. Circulating tumor DNA (ctDNA) has shown great potential as a noninvasive biomarker in systemic lymphomas. Yet, previous studies revealed low ctDNA detection rates in blood plasma of CNSL patients. In this study, we utilized ultrasensitive targeted high-throughput sequencing technologies to explore the role of ctDNA for disease classification, MRD detection, and early prediction of clinical outcomes in patients with CNSL. Methods: We applied Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) and Phased Variant Enrichment and Detection Sequencing (PhasED-Seq, Kurtz et al, Nat Biotech 2021) to 85 tumor biopsies, 131 plasma samples, and 62 CSF specimens from 92 CNSL patients and 44 patients with other brain cancers or inflammatory cerebral diseases, targeting 794 distinct genetic regions. Concentrations of ctDNA were correlated with radiological measures of tumor burden and tested for associations with clinical outcomes at distinct clinical time points. We further developed a novel classifier to noninvasively distinguish CNS lymphomas from other CNS tumors based on their mutational landscapes in plasma and CSF, using supervised training of a machine learning approach from tumor whole genome sequencing data and own genotyping analyses, followed by its independent validation. Results: We identified genetic aberrations in 100% of CNSL tumor biopsies (n=63), with a median of 262 mutations per patient. Pretreatment plasma ctDNA was detectable in 78% of plasma samples and in 100% of CSF specimens (Fig. 1a), with ctDNA concentrations ranging from 0.0004 - 5.94% allele frequency (AF, median: 0.01%) in plasma and 0.0049 - 50.47% AF (median: 0.62%) in CSF (Fig. 1b). Compared to ctDNA concentrations in patients with systemic diffuse large B-cell lymphoma (DLBCL, data from Kurtz et al., J Clin Oncol, 2018), plasma ctDNA levels in CNSL were in median more than 200-fold lower (Fig. 1b). We observed a significant correlation of ctDNA concentrations with total radiographic tumor volumes (TRTV) measured by MRI (Fig. 1c,d), but no association with clinical risk scores (i.e., MSKCC score) or concurrent steroid treatment. Assessment of ctDNA at pretreatment time points predicted progression-free survival (PFS) and overall survival (OS), both as continuous and binary variable (Fig. 1e,f). Notably, patients could be stratified into risk groups with particularly favorable or poor prognoses by combining ctDNA and TRTV as pretreatment biomarkers (Fig. 1g). Furthermore, ctDNA positivity during curative-intent induction therapy was significantly associated with clinical outcomes, both PFS and OS (Fig. 1h). Finally, we applied our novel machine learning classifier to 207 specimens from an independent validation cohort of CNSL and Non-CNSL patients. We observed high specificity (100%) and positive predictive value (100%) for noninvasive diagnosis of CNSL, with a sensitivity of 57% for CSF and 21% for plasma, suggesting that a significant subset of CNSL patients might be able to forego invasive surgical biopsies. Conclusions: We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in CNSL. Our findings suggest that ctDNA accurately mirrors tumor burden and serves as a valuable clinical biomarker for risk stratification, outcome prediction, and surgery-free lymphoma classification in CNSL. We foresee an important potential future role of ctDNA as a decision-making tool to guide treatment in patients with CNSL. Figure 1 Figure 1. Disclosures Esfahani: Foresight Diagnostics: Current holder of stock options in a privately-held company. Kurtz: Genentech: Consultancy; Roche: Consultancy; Foresight Diagnostics: Consultancy, Current holder of stock options in a privately-held company. Schorb: Riemser Pharma GmbH: Honoraria, Research Funding; Roche: Research Funding; AbbVie: Research Funding. Diehn: BioNTech: Consultancy; RefleXion: Consultancy; Roche: Consultancy; AstraZeneca: Consultancy; Foresight Diagnostics: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; CiberMed: Current holder of stock options in a privately-held company, Patents & Royalties; Illumina: Research Funding; Varian Medical Systems: Research Funding. Alizadeh: Foresight Diagnostics: Consultancy, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Gilead: Consultancy; Roche: Consultancy, Honoraria; Celgene: Consultancy, Research Funding; Janssen Oncology: Honoraria; CAPP Medical: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Forty Seven: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Cibermed: Consultancy, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Bristol Myers Squibb: Research Funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲菲完成签到 ,获得积分10
刚刚
酷酷的山雁完成签到,获得积分10
2秒前
韭菜盒子完成签到,获得积分20
2秒前
Jiangjiatiao发布了新的文献求助10
4秒前
勤奋的冬萱完成签到,获得积分10
7秒前
青藤完成签到,获得积分10
8秒前
10秒前
荀煜祺应助科研通管家采纳,获得10
13秒前
风清扬应助科研通管家采纳,获得10
13秒前
哭泣青烟完成签到 ,获得积分10
15秒前
科研王子完成签到,获得积分10
17秒前
bobo完成签到,获得积分10
17秒前
尚影芷完成签到,获得积分10
18秒前
康复小白完成签到 ,获得积分10
19秒前
吉以寒完成签到,获得积分10
20秒前
副本完成签到 ,获得积分10
21秒前
亲爱的冯老师完成签到 ,获得积分10
25秒前
zp6666tql完成签到 ,获得积分10
26秒前
sptyzl完成签到 ,获得积分10
27秒前
123456完成签到,获得积分10
27秒前
书生完成签到,获得积分10
28秒前
程程完成签到,获得积分10
37秒前
Cai完成签到,获得积分10
37秒前
零玖完成签到 ,获得积分10
42秒前
好运上上签完成签到 ,获得积分10
46秒前
47秒前
健康的大门完成签到,获得积分10
48秒前
yaolei完成签到,获得积分10
50秒前
xue112完成签到 ,获得积分10
50秒前
Urusaiina完成签到,获得积分10
50秒前
热可可728完成签到,获得积分10
51秒前
如泣草芥完成签到,获得积分0
51秒前
燕燕发布了新的文献求助10
51秒前
昵称什么的不重要啦完成签到 ,获得积分10
53秒前
完犊子发布了新的文献求助10
54秒前
YUUNEEQUE完成签到,获得积分10
57秒前
58秒前
dominic12361完成签到 ,获得积分10
59秒前
无花果应助完犊子采纳,获得10
1分钟前
WYN完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4112533
求助须知:如何正确求助?哪些是违规求助? 3650895
关于积分的说明 11560196
捐赠科研通 3355345
什么是DOI,文献DOI怎么找? 1843186
邀请新用户注册赠送积分活动 909298
科研通“疑难数据库(出版商)”最低求助积分说明 826209