Understanding and utilizing textile-based electrostatic flocking for biomedical applications

植绒(纹理) 纳米技术 计算机科学 超细纤维 材料科学 人工智能 复合材料
作者
Alec McCarthy,Rajesh Shah,Johnson V. John,D. Clayton Brown,Jingwei Xie
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:8 (4) 被引量:15
标识
DOI:10.1063/5.0070658
摘要

Electrostatic flocking immobilizes electrical charges to the surface of microfibers from a high voltage-connected electrode and utilizes Coulombic forces to propel microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. This traditional textile engineering technique has been used to modify surfaces or to create standalone anisotropic structures. Notably, a small body of evidence validating the use of electrostatic flocking for biomedical applications has emerged over the past several years. Noting the growing interest in utilizing electrostatic flocking in biomedical research, we aim to provide an overview of electrostatic flocking, including the principle, setups, and general and biomedical considerations, and propose a variety of biomedical applications. We begin with an introduction to the development and general applications of electrostatic flocking. Additionally, we introduce and review some of the flocking physics and mathematical considerations. We then discuss how to select, synthesize, and tune the main components (flocking fibers, adhesives, substrates) of electrostatic flocking for biomedical applications. After reviewing the considerations necessary for applying flocking toward biomedical research, we introduce a variety of proposed use cases including bone and skin tissue engineering, wound healing and wound management, and specimen swabbing. Finally, we presented the industrial comments followed by conclusions and future directions. We hope this review article inspires a broad audience of biomedical, material, and physics researchers to apply electrostatic flocking technology to solve a variety of biomedical and materials science problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_LOokQL发布了新的文献求助10
1秒前
cmh完成签到,获得积分20
1秒前
花花完成签到 ,获得积分10
1秒前
兴奋冷松完成签到,获得积分10
2秒前
Robertchen完成签到,获得积分0
2秒前
赵西里完成签到,获得积分10
2秒前
15884134873完成签到,获得积分10
2秒前
从容傲柏发布了新的文献求助10
4秒前
Rosaline完成签到 ,获得积分10
5秒前
bigchui完成签到,获得积分10
5秒前
自然凝竹完成签到,获得积分10
5秒前
huco完成签到,获得积分10
5秒前
nyfz2002发布了新的文献求助10
6秒前
7秒前
abc123完成签到,获得积分10
7秒前
自然怀寒完成签到,获得积分10
7秒前
哆啦A梦完成签到,获得积分10
8秒前
在水一方应助浪浪山采纳,获得10
8秒前
124cndhaP完成签到,获得积分10
8秒前
8秒前
xfyxxh完成签到,获得积分10
8秒前
脑洞疼应助从容傲柏采纳,获得10
9秒前
烤番薯完成签到,获得积分10
9秒前
充满怪兽的世界完成签到,获得积分10
9秒前
10秒前
大模型应助橘子采纳,获得10
11秒前
雪菲菲发布了新的文献求助10
11秒前
昂叔的头发丝儿完成签到,获得积分10
12秒前
12秒前
12秒前
kyt完成签到,获得积分10
13秒前
Allough完成签到,获得积分10
14秒前
冰儿菲菲完成签到,获得积分10
15秒前
bkagyin应助简单平松采纳,获得10
15秒前
独指蜗牛完成签到 ,获得积分10
16秒前
guoguoguo完成签到,获得积分10
16秒前
16秒前
丰富诗柳发布了新的文献求助30
16秒前
猕猴桃不逃完成签到 ,获得积分10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827509
求助须知:如何正确求助?哪些是违规求助? 3369757
关于积分的说明 10457657
捐赠科研通 3089465
什么是DOI,文献DOI怎么找? 1699897
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263