Severity Prediction of Traffic Accidents with Recurrent Neural Networks

循环神经网络 Softmax函数 计算机科学 辍学(神经网络) 人工智能 人工神经网络 机器学习 逻辑回归 深度学习 多层感知器
作者
Maher Ibrahim Sameen,Biswajeet Pradhan
出处
期刊:Applied sciences [MDPI AG]
卷期号:7 (6): 476-476 被引量:169
标识
DOI:10.3390/app7060476
摘要

In this paper, a deep learning model using a Recurrent Neural Network (RNN) was developed and employed to predict the injury severity of traffic accidents based on 1130 accident records that have occurred on the North-South Expressway (NSE), Malaysia over a six-year period from 2009 to 2015. Compared to traditional Neural Networks (NNs), the RNN method is more effective for sequential data, and is expected to capture temporal correlations among the traffic accident records. Several network architectures and configurations were tested through a systematic grid search to determine an optimal network for predicting the injury severity of traffic accidents. The selected network architecture comprised of a Long-Short Term Memory (LSTM) layer, two fully-connected (dense) layers and a Softmax layer. Next, to avoid over-fitting, the dropout technique with a probability of 0.3 was applied. Further, the network was trained with a Stochastic Gradient Descent (SGD) algorithm (learning rate = 0.01) in the Tensorflow framework. A sensitivity analysis of the RNN model was further conducted to determine these factors’ impact on injury severity outcomes. Also, the proposed RNN model was compared with Multilayer Perceptron (MLP) and Bayesian Logistic Regression (BLR) models to understand its advantages and limitations. The results of the comparative analyses showed that the RNN model outperformed the MLP and BLR models. The validation accuracy of the RNN model was 71.77%, whereas the MLP and BLR models achieved 65.48% and 58.30% respectively. The findings of this study indicate that the RNN model, in deep learning frameworks, can be a promising tool for predicting the injury severity of traffic accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
知安完成签到,获得积分10
2秒前
无事小神仙完成签到 ,获得积分10
3秒前
浮游应助lina采纳,获得10
3秒前
4秒前
难过的班发布了新的文献求助10
5秒前
5秒前
6秒前
姚断天完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
7秒前
xiaoxu完成签到,获得积分10
8秒前
9秒前
Seven完成签到,获得积分10
9秒前
哈哈完成签到,获得积分10
9秒前
吴彦祖应助rrw采纳,获得10
9秒前
Zzz完成签到,获得积分10
9秒前
威哥完成签到,获得积分10
10秒前
11秒前
kimon完成签到,获得积分10
11秒前
Orange应助你好采纳,获得10
12秒前
上官若男应助郭松林采纳,获得10
12秒前
桃子完成签到 ,获得积分10
14秒前
知安发布了新的文献求助10
14秒前
余鹰完成签到,获得积分10
14秒前
tdtk发布了新的文献求助10
15秒前
15秒前
浮游应助大黑U为客户采纳,获得10
17秒前
大白发布了新的文献求助10
17秒前
左婷完成签到,获得积分10
18秒前
科研通AI6应助陈M雯采纳,获得10
18秒前
浮游应助乐瑶采纳,获得10
18秒前
NexusExplorer应助哈哈哈采纳,获得10
18秒前
发发发布了新的文献求助10
21秒前
张雨欣完成签到 ,获得积分10
22秒前
风中雅青发布了新的文献求助10
22秒前
浮游应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
一一应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494670
求助须知:如何正确求助?哪些是违规求助? 4592359
关于积分的说明 14436596
捐赠科研通 4525161
什么是DOI,文献DOI怎么找? 2479240
邀请新用户注册赠送积分活动 1464059
关于科研通互助平台的介绍 1437129