Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations

分子动力学 化学 动力学(音乐) 热力学 能量(信号处理) 计算化学 材料科学 物理 数学 统计 声学
作者
Tingjun Hou,Junmei Wang,Youyong Li,Wei Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:51 (1): 69-82 被引量:2342
标识
DOI:10.1021/ci100275a
摘要

The Molecular Mechanics/Poisson−Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxszxs完成签到,获得积分20
1秒前
等待亦旋完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
Aikesi完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
可靠的老鼠完成签到,获得积分10
5秒前
pake发布了新的文献求助10
5秒前
吴军霄完成签到,获得积分10
6秒前
喵小猫发布了新的文献求助10
6秒前
简易发布了新的文献求助10
7秒前
SYLH应助科研通管家采纳,获得30
7秒前
SYLH应助科研通管家采纳,获得30
7秒前
yecheng发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
刘青铜发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
彩色语蝶完成签到,获得积分10
8秒前
8秒前
9秒前
悦耳以亦完成签到 ,获得积分10
9秒前
9秒前
玛卡巴卡完成签到,获得积分10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869632
求助须知:如何正确求助?哪些是违规求助? 3411733
关于积分的说明 10676407
捐赠科研通 3136291
什么是DOI,文献DOI怎么找? 1730114
邀请新用户注册赠送积分活动 833721
科研通“疑难数据库(出版商)”最低求助积分说明 780935