Development of SnAg-based lead free solders in electronics packaging

障碍 焊接 材料科学 微观结构 共晶体系 冶金 蠕动 数码产品 可焊性 复合材料 化学 生态学 生物 物理化学 栖息地
作者
Liang Zhang,Chengwen He,Yonghuan Guo,Junyu Han,Yong‐Wei Zhang,Wang Xu-yan
出处
期刊:Microelectronics Reliability [Elsevier BV]
卷期号:52 (3): 559-578 被引量:89
标识
DOI:10.1016/j.microrel.2011.10.006
摘要

Lead free solder alloys for electronic assembly is being driven by environmental and health concerns regarding toxicity of lead and, more importantly, by the perceived economic advantage of marketing “green” products. Of the currently available lead free solders, SnAg has the greatest potential. In this solder, the Ag3Sn compound is distributed in a eutectic network throughout the β-Sn matrix and these results represent mechanical strength. In order to further improve the microstructures and properties of SnAg-based alloys, alloying elements such as rare earth, Zn, In, P, Cu, Ni and particles such as ZrO2, POSS are selected to meet the requirement of high reliability of high-density electronics devices. For SnAg solder bearing rare earth (Ce and La), the creep-rupture life of solder joints can be remarkably increased up to four times more than that of the original SnAg solder joints at room temperature, meanwhile, rare earths can dramatically reduce the thickness of IMCs layer at solder/pad interfaces and also refine the microstructure of the alloy which results in the enhancement of mechanical properties of the SnAg solder. Moreover, the addition of ZrO2 nanoparticles significantly refined the size of Ag3Sn due to the adsorption effect of the ZrO2 nanoparticles. This paper summarizes the effects of alloying elements and particles on the wettability, mechanical properties, creep behavior, microstructures, etc. of SnAg-based lead free solder alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助壹肆伍采纳,获得10
刚刚
1秒前
曹操完成签到,获得积分10
1秒前
领导范儿应助TTT0530采纳,获得10
1秒前
1秒前
Aegean发布了新的文献求助10
2秒前
wiv07发布了新的文献求助30
2秒前
慕予完成签到 ,获得积分10
4秒前
玩命做研究完成签到 ,获得积分10
4秒前
6秒前
Richard完成签到,获得积分10
8秒前
8秒前
8秒前
等待冬亦应助张东泽采纳,获得10
9秒前
可爱的函函应助不吃西瓜采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Oracle应助科研通管家采纳,获得30
10秒前
wy.he应助科研通管家采纳,获得10
10秒前
10秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
旭尧天完成签到,获得积分10
12秒前
RUC_Zhao发布了新的文献求助30
14秒前
14秒前
15秒前
爬不起来发布了新的文献求助10
16秒前
16秒前
17秒前
勤劳的忆寒完成签到,获得积分0
17秒前
两天浇一次水完成签到,获得积分10
17秒前
白翊辰发布了新的文献求助10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835031
求助须知:如何正确求助?哪些是违规求助? 3377559
关于积分的说明 10499056
捐赠科研通 3097028
什么是DOI,文献DOI怎么找? 1705435
邀请新用户注册赠送积分活动 820590
科研通“疑难数据库(出版商)”最低求助积分说明 772123