A New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm

数学优化 粒子群优化 水准点(测量) 多群优化 解算器 元启发式 计算机科学 萤火虫算法 最优化问题 趋同(经济学) 早熟收敛 算法 聚类分析 连续优化 多目标优化 数学 人工智能 大地测量学 经济增长 经济 地理
作者
Weiyang Tong,Souma Chowdhury,Achille Messac
标识
DOI:10.1115/detc2014-35572
摘要

Complex system design problems tend to be high dimensional and nonlinear, and also often involve multiple objectives and mixed-integer variables. Heuristic optimization algorithms have the potential to address the typical (if not most) characteristics of such complex problems. Among them, the Particle Swarm Optimization (PSO) algorithm has gained significant popularity due to its maturity and fast convergence abilities. This paper seeks to translate the unique benefits of PSO from solving typical continuous single-objective optimization problems to solving multi-objective mixed-discrete problems, which is a relatively new ground for PSO application. The previously developed Mixed-Discrete Particle Swarm Optimization (MDPSO) algorithm, which includes an exclusive diversity preservation technique to prevent premature particle clustering, has been shown to be a powerful single-objective solver for highly constrained MINLP problems. In this paper, we make fundamental advancements to the MDPSO algorithm, enabling it to solve challenging multi-objective problems with mixed-discrete design variables. In the velocity update equation, the explorative term is modified to point towards the non-dominated solution that is the closest to the corresponding particle (at any iteration). The fractional domain in the diversity preservation technique, which was previously defined in terms of a single global leader, is now applied to multiple global leaders in the intermediate Pareto front. The multi-objective MDPSO (MO-MDPSO) algorithm is tested using a suite of diverse benchmark problems and a disc-brake design problem. To illustrate the advantages of the new MO-MDPSO algorithm, the results are compared with those given by the popular Elitist Non-dominated Sorting Genetic Algorithm-II (NSGA-II).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助自然的冰绿采纳,获得10
刚刚
tonydymt完成签到 ,获得积分10
刚刚
1秒前
西西完成签到,获得积分10
1秒前
猫科动物发布了新的文献求助10
1秒前
张烤明完成签到,获得积分10
1秒前
ycp完成签到,获得积分10
1秒前
1484发布了新的文献求助10
2秒前
ihtw发布了新的文献求助10
2秒前
FashionBoy应助强公子采纳,获得10
2秒前
katharsis发布了新的文献求助10
2秒前
大模型应助xx采纳,获得10
3秒前
3秒前
顾矜应助Hao采纳,获得10
4秒前
大模型应助拼搏的听寒采纳,获得10
4秒前
judy完成签到,获得积分10
5秒前
诗谙发布了新的文献求助10
5秒前
Orange应助平常的秋蝶采纳,获得10
6秒前
junjun2011完成签到,获得积分10
6秒前
6秒前
6秒前
Lucas应助Mely0203采纳,获得10
7秒前
7秒前
小辉完成签到,获得积分10
7秒前
烟花应助尊敬雪萍采纳,获得10
7秒前
痛苦啊应助Genius采纳,获得10
7秒前
个性襄完成签到,获得积分10
7秒前
安静的雁兰完成签到,获得积分10
8秒前
半夏发布了新的文献求助10
8秒前
Amy发布了新的文献求助10
9秒前
11111发布了新的文献求助30
9秒前
9秒前
共享精神应助叶子采纳,获得10
10秒前
哈哈哈完成签到 ,获得积分10
10秒前
zyqy完成签到,获得积分10
10秒前
NexusExplorer应助西瓜鹿采纳,获得10
11秒前
SYLH应助个性襄采纳,获得10
11秒前
皮皮怪完成签到,获得积分10
11秒前
所所应助Sw1ft采纳,获得10
11秒前
上将军顺完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946696
求助须知:如何正确求助?哪些是违规求助? 3491793
关于积分的说明 11062463
捐赠科研通 3222764
什么是DOI,文献DOI怎么找? 1781090
邀请新用户注册赠送积分活动 866118
科研通“疑难数据库(出版商)”最低求助积分说明 800155