NOISE-ROBUST SOFT CLUSTERING OF GENE EXPRESSION TIME-COURSE DATA

聚类分析 模糊聚类 CURE数据聚类算法 数据挖掘 相关聚类 计算机科学 共识聚类 单连锁聚类 高维数据聚类 噪音(视频) 双聚类 模式识别(心理学) 先验与后验 人工智能 认识论 图像(数学) 哲学
作者
Matthias E. Futschik,B Carlisle
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:03 (04): 965-988 被引量:459
标识
DOI:10.1142/s0219720005001375
摘要

Clustering is an important tool in microarray data analysis. This unsupervised learning technique is commonly used to reveal structures hidden in large gene expression data sets. The vast majority of clustering algorithms applied so far produce hard partitions of the data, i.e. each gene is assigned exactly to one cluster. Hard clustering is favourable if clusters are well separated. However, this is generally not the case for microarray time-course data, where gene clusters frequently overlap. Additionally, hard clustering algorithms are often highly sensitive to noise. To overcome the limitations of hard clustering, we applied soft clustering which offers several advantages for researchers. First, it generates accessible internal cluster structures, i.e. it indicates how well corresponding clusters represent genes. This can be used for the more targeted search for regulatory elements. Second, the overall relation between clusters, and thus a global clustering structure, can be defined. Additionally, soft clustering is more noise robust and a priori pre-filtering of genes can be avoided. This prevents the exclusion of biologically relevant genes from the data analysis. Soft clustering was implemented here using the fuzzy c-means algorithm. Procedures to find optimal clustering parameters were developed. A software package for soft clustering has been developed based on the open-source statistical language R. The package called Mfuzz is freely available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到,获得积分10
2秒前
李健应助ei采纳,获得10
2秒前
酷波er应助hsp采纳,获得10
3秒前
3秒前
九九九应助tracy采纳,获得10
5秒前
jy发布了新的文献求助10
6秒前
贪玩灵松发布了新的文献求助10
7秒前
nk完成签到 ,获得积分10
7秒前
夢梩完成签到,获得积分10
7秒前
爱学习的太阳完成签到,获得积分10
8秒前
破风完成签到,获得积分10
9秒前
9秒前
猪猪给猪猪的求助进行了留言
13秒前
15秒前
CodeCraft应助贪玩灵松采纳,获得10
16秒前
忧郁虔完成签到,获得积分10
16秒前
jy完成签到,获得积分20
16秒前
乐乐应助眼睛大泥猴桃采纳,获得10
17秒前
up完成签到 ,获得积分20
19秒前
英姑应助xingcheng采纳,获得10
19秒前
20秒前
毓桦完成签到,获得积分20
20秒前
21秒前
科目三应助鲤鱼懿轩采纳,获得10
21秒前
22秒前
Lucas应助甜美宛儿采纳,获得10
22秒前
十三应助cm采纳,获得10
23秒前
23秒前
善学以致用应助孟寐以求采纳,获得10
25秒前
25秒前
神说要有光完成签到,获得积分10
25秒前
十八发布了新的文献求助10
26秒前
Wen发布了新的文献求助10
26秒前
爆米花应助帅气的夏天采纳,获得10
27秒前
帅气天荷完成签到 ,获得积分10
27秒前
FashionBoy应助平安喜乐采纳,获得10
29秒前
仲夏发布了新的文献求助10
29秒前
30秒前
30秒前
科研通AI5应助十八采纳,获得10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845043
求助须知:如何正确求助?哪些是违规求助? 3387239
关于积分的说明 10548500
捐赠科研通 3107967
什么是DOI,文献DOI怎么找? 1712311
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774706